

Betriebsanleitung confocaIDT IFD2410/2411/2415 EtherNet/IP

IFD2410-1 IFD2410-3 IFD2410-6 IFD2411-1 IFD2411-2 IFD2411/90-2 IFD2411-3 IFD2411-6 IFD2415-1 IFD2415-3 IFD2415-10 Konfokal-chromatische Abstands- und Dickenmessung

MICRO-EPSILON MESSTECHNIK GmbH & Co. KG Königbacher Str. 15

94496 Ortenburg / Deutschland

Tel. +49 (0) 8542 / 168-0 Fax +49 (0) 8542 / 168-90 e-mail info@micro-epsilon.de www.micro-epsilon.de

Inhalt

1.	Sicherh	eit	9
1.1	Verwend	ete Zeichen	9
1.2	Hinwoise		10
1.0	1.3.1	Hinweise zur CE-Kennzeichnung	10
	1.3.2	Hinweise zur UKCA-Kennzeichnung	10
1.4	Bestimm	ungsgemäße Verwendung	10
1.5	Bestimm	ungsgemäßes Umfeld	10
•	E	neuvineire Technische Deten	
2.	FUNKTIO	nsprinzip, lechnische Daten	11
2.I 2.2	Messoria		11
2.2	Beariffsd	efinition Glossar	12
2.4	Technisc	he Daten confocalDT IFD2410	13
2.5	Technisc	he Daten confocalDT IFD2415	14
2.6	Technisc	he Daten confocalDT IFD2411	15
•	1		
3.	Lieferun	19 fana aanfaaalDT IED2/110/2/15	16
3.1 3.2	Lieferum	iang confocalDT IFD2410/2415	16
3.3	Lagerung		16
0.0	Lageran	j	
4.	Montag	e	17
4.1	Vorbeme	rkung	17
4.2	contocal	DI IFD2410/2415	17
	4.2.1	Umrangskiemmung	17
	4.2.2	Directiverschraubung	10
	4.2.4	Massekonzept, Schimung	20
	4.2.5	Versorgungsspannung (Power)	20
	4.2.6	RS422	21
	4.2.7	Ethernet, EtherNET/IP	21
	4.2.8	Analogausgang	22
	4.2.9	Multifunctionseingange	22
	4.2.10	Sunditausgalige (Digital 1/0)	23
	1.2.11	4.2.11.1 Allgemein	24
		4.2.11.2 Interne Synchronisation	24
		4.2.11.3 Externe Synchronisation	25
	4.2.12	Triggerung	26
		4.2.12.1 Aligemein	26
		4.2.12.2 Inggerung mit Multiunktionseingang	20
		4.2.12.4 Triggering mit Synchronengang	26
	4.2.13	Encodereingänge	27
4.3	confocal	DT 2411	28
	4.3.1	Controller IFC2411	28
	4.3.2	Sensorkabel, Lichtwellenleiter	28
	4.3.3	Mabzeicinung Sensoren	30
	4.3.4	4.3.4.1 Allaemein	30
		4.3.4.2 Umfangsklemung	30
	4.3.5	Elektrische Anschlüsse, Anschlussbelegung	32
	4.3.6	Massekonzept, Schirmung	32
	4.3.7	Versorgungsspannung (Power)	33
	4.3.8	HS422	33
	4.3.9	Analogausgang	33 34
	4.3.11	Multiputtionseingang	34
	4.3.12	Synchronisation (Ein-Ausgänge)	35
		4.3.12.1 Allgemein	35
		4.3.12.2 Interne Synchronisation	35
	4010	4.3.12.3 Externe Synchronisation Controller	36
	4.3.13	13131 Allgemein	37
		4.3.1.3.2 Triggerung mit Multifunktionseingang	37
		4.3.13.3 Triggerung mit Synchroneingang	37
		4.3.13.4 Triggerung mit Eingang Encoder 1	38
	4.3.14	Encodereingang	38
	4.3.15	Handhabung der steckbaren Schraubklemmen	38
1 1	4.3.16		38 20
4.4 4.5	Taste Co	rrect und Multifunction	39 ∆∩
r.0			τU
5.	Inbetrie	bnahme	41
5.1	Kommur	ikationsmöglichkeiten	41
5.2	Zugriff ül	per Webinterface	42
5.3 54	Messobj	ekt platzieren	43
5.4 5.5	Sensor a	uswannen Setuns Auswahl Messkonfiguration	43 <u>∆</u> ∆
0.0	1100000,	estape, / dettain moontonnyaration	1 7

5.6	Videosignal				
5.8	Abstandsmessung mit Anzeige auf der Webseite				
5.9	Einstellungen speichern/laden				
5.10	Dunkelkorrektur	51			
6.	Sensorparameter einstellen. Webinterface				
6.1	Eingänge				
	6.1.1 Synchronisation				
	6.1.2 Encodereingange				
	6122 Anzahl Encoder				
	6.1.2.3 Interpolation				
	6.1.2.4 Maximaler Wert	54			
	6.1.2.5 Wirkung der Referenzspur				
	6.1.2.0 Setzen auf Wert 6.1.2.7 Bücksetzen Beferenzmarke				
	6.1.3 Pegel Funktionseingänge.				
	6.1.4 Abschlusswiderstand	55			
6.2	Messwertaufnahme				
	6.2.1 Messrate				
	6.2.2 Allgemein				
	6.2.2.2 Triggerung der Messwertaufnahme				
	6.2.2.3 Triggerzeitdifferenz				
	6.2.3 Zähler zurücksetzen				
	6.2.5 Belichtungsmodus				
	6.2.6 Peaktrennung				
	6.2.6.1 Peakmodulation	60			
	6.2.6.2 Erkennungsschwelle	60			
	6.2.7 Anzani Peaks, Peakauswani				
6.3	Signalverarbeitung. Rechnung.				
	6.3.1 Datenquelle, Parameter, Rechenprogramme	63			
	6.3.2 Definitionen	64			
64	6.3.3 Messwertmittelung				
0.4	6.4.1 Nullsetzen. Mastern				
	6.4.2 Statistik				
	6.4.3 Datenreduktion, Ausgabe-Datenrate				
6 F	6.4.4 Fehlerbehandlung (Letzten Wert halten)				
0.0	Ausgalige 6.5.1 Schnittstelle BS422				
	6.5.2 RS422				
	6.5.3 Analogausgang				
	6.5.3.1 Berechnung Messwert aus Stromausgang				
	6.5.4 Datenausgabe				
6.6	Systemeinstellungen	75			
	6.6.1 Einheit Webinterface				
	6.6.2 lastensperre				
	6.6.4 Zugriffsberechtigung				
	6.6.5 System rücksetzen				
	6.6.6 Lichtquelle	76			
7	Dickenmessung Einseitig transparentes Messohiekt	77			
7.1	Voraussetzung				
7.2	Preset	77			
7.3	Materialauswahl				
7.4 7.5	Videosignal				
7.5	Messwertanzeige				
8.	EtherNet/IP, Dokumentation				
8.1 8.2	Vorbemerkung Finstallungen speichern, EtherNet/IP.Betrieb fortsetzen				
8.3	Allaemein				
8.4	Explicite Messaging	80			
	8.4.1 Standard-Objekte				
	8.4.1.2 Object 0v01b: Identity				
	8.4.1.3 Object 0x04 Assembly				
	8.4.1.4 Object 0xF5 TCP/IP Interface				
	8.4.1.5 Object 0x43 Time Sync				
9 F	8.4.2 Herstellerspezitische Ubjekte				
0.0	8.5.1 Allgemein				
	8.5.2 I/O-Connection Fixed OV1 Input Only				
	8.5.3 I/O-Connection Fixed OV1 Listen Only				
	8.5.4 I/O-Connection Mappable Input Only				

8.6 8.7 8.8 8.9 8.10	Geräteb Oversam IP-Adres IP-Konfig Synchro 8.10.1 8.10.2	eschreibungs ppling se Sensor un guration nisation von S Allgemein Gleichzeitig	datei EDS bekannt Sensoren ge Synchronisation	94 94 94 94 95 95 95	
9. 9.1 9.2 9.3	Fehler, Kommur Wechsel Wechsel	Reparatur nikation Webin des Sensork der Schutzso	nterface abels an den Sensoren cheibe an den Sensoren	96 96 96	
10.	Softwa	reunterstütz	zung mit MEDAQLib		
11.	Haftung	gsausschlu	SS		
12.	Service	e, Reparatur	٢		
13.	Außerb	etriebnahm	ie, Entsorgung		
	Anhang	J		100	
A 1	Option	ales Zubehö	ör, Serviceleistungen		
A 1.1	Optional	es Zubehör o	onfocalDT IFD2410/2415		
A 1.2 A 1.3	Servicele	es Zubenor d eistungen			
A 0	Morkog	inotollungo		101	
A 2.1	confocal	DT IFD2410/2	۳ 2415		
A 2.2	confocal	DT IFD2411.		101	
A 3	Justier	barer Monta	ageadapter JMA-xx		
A 3.1	Funktion	en			
A 3.2 A 3.3	Montage	elestigung, K	ompatibilitat		
A 3.4	Maßzeic	Maßzeichnung Montageadapter			
A 3.5	Ortnogo	nale Ausricht	ung des Sensors		
A 4	Reinige	en optische	r Komponenten		
A 4.1 A 4.2	Hilfs- un	d Reinigungs	mittel		
A 4.3	Schutzs	cheibe Senso	۲ ۲. Openanduch al		
A 4.4 A 4.5	Schnitts	elle Controlle elle Sensorka	abel Sensor		
A 4.6	Vorbeug	ende Schutzr	naßnahme	107	
A 5	ASCII-ł	Kommunika	tion mit Controller		
A 5.1	Allgeme	n t Bofoblo			
A 5.2 A 5.3	Allgeme	ine Befehle			
	A 5.3.1	Allgemein	Liife		
		A 5.3.1.1 A 5.3.1.2	Controllerinformation		
		A 5.3.1.3	Antworttyp		
		A 5.3.1.4 A 5.3.1.5	Synchronisation		
		A 5.3.1.6	Términierungswiderstand an Sync/Trig		
		A 5.3.1.7 A 5.3.1.8	Zähler zurücksetzen		
	A 5.3.2	Benutzereb	ene		
		A 5.3.2.1 A 5.3.2.2	Wechsel in die Benutzerebene		
		A 5.3.2.3	Abfrage der Benutzerebene		
		A 5.3.2.4 A 5.3.2.5	Einstellen des Standardnutzers Kennwort ändern		
	A 5.3.3	Pegel Multi	funktionseingänge		
	A 5.3.4	Sensor A 5 3 4 1	Info zu Kalibriertabellen		
		A 5.3.4.2	Sensorinformationen		
		A 5.3.4.3 A 5 3 4 4	LeD		
		A 5.3.4.5	Steuereingang Messlichtquelle	114	
	A 5.3.5	A 5 3 5 1	Triggerguelle auswählen		
		A 5.3.5.2	Ausgabe von getriggerten Werten, mit/ohne Mittelung		
		A 5.3.5.3 A 5 3 5 4	Iriggerart Aktivpegel des Triggereinganges		
		A 5.3.5.5	Software-Triggerimpuls		
		A 5.3.5.6 A 5.3.5.7	Anzahl der auszugebenden Messwerte Pegelauswahl Triggereingang Triglin		
		A 5.3.5.8	Schrittweite Encodertriggerung		
		A 5.3.5.9	Minimum Encodertriggerung		
		A 0.0.0.10	Maximum Encoderinggerung		

A 5.3.6	Encoder	116
	A 5.3.6.1 Maximale Anzahl verfügbarer Encoder	116
	A 5.3.6.2 Encoder-Interpolationstiete	116
	A 5 3 6 4 Encoderwert	117
	A 5.3.6.5 Encoderwert per Software setzen	117
	A 5.3.6.6 Rücksetzen der Erkennung der ersten Referenzmarke	117
	A 5.3.6.7 Maximaler Encoderwert	117
A 5 3 7	A 5.3.0.8 ANZANI AKIIVER ENCODER	118
A 5.3.8	Parameterverwaltung, Einstellungen laden / Speichern	119
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	A 5.3.8.1 Verbindungseinstellungen laden / speichern	119
	A 5.3.8.2 Geänderte Parameter anzeigen	119
	A 5.3.8.3 Export von Parametersätzen in PC	119
	A 5.3.8.4 Import von Parametersatzen aus PC	119
	A 5.3.8.6 Messeinstellungen bearbeiten speichern anzeigen löschen	120
A 5.3.9	Messung	120
	A 5.3.9.1 Peakanzahl	120
	A 5.3.9.2 Peakauswahl	120
	A 5.3.9.3 Anzahl Peaks und Ein-/Ausschalten der Brechzahlkorrektur	121
	A 5.3.9.5 Messrate	121
	A 5.3.9.6 Belichtungszeit	121
	A 5.3.9.7 Maskierung des Auswertebereichs	121
	A 5.3.9.8 Mindestschwelle Peakerkennung	121
A E 2 10	A 5.3.9.9 Peakmodulation	122
A 5.3.10	Δ 5.3.10.1 Materialtabelle	122
	A 5.3.10.2 Material auswählen	122
	A 5.3.10.3 Materialeigenschaft anzeigen	122
	A 5.3.10.4 Vorhandene Materialnamen im Controller	122
	A 5.3.10.5 Geschützte Materialien im Controller	122
	A 5.3.10.0 Materialitabelle editieren	123
	A 5.3.10.8 Material ergänzen	123
A 5.3.11	Messwertbearbeitung	123
	A 5.3.11.1 Statistikberechnung	123
	A 5.3.11.2 Liste Statistiksignale	123
	A 5.3.11.3 Auswani Statistiksignal	124
	A 5.3.11.5 Liste der möglich zu parametrisierenden Signale	124
	A 5.3.11.6 Parametrisieren der Mastersignale	124
	A 5.3.11.7 Liste möglicher Signale für das Mastern	124
	A 5.3.11.8 Mastern / Nullsetzen	124
	A 5.3.11.9 Signal für Mastern mit externer Quelle	125
	A 5.3.11.11 Beispiel Mastern	125
	A 5.3.11.12 Berechnung im Kanal	127
	A 5.3.11.13 Liste möglicher Berechnungssignale	127
	A 5.3.11.14 Zweipunktskalierung Datenausgänge	127
A 5.3.12	A 5 3 12 1 Auswahl Digitalausgang	128
	A 5.3.12.1 Auswahl Digitalausgahg	120
	A 5.3.12.3 Reduzierungszähler Messwertausgabe	128
	A 5.3.12.4 Fehlerbehandlung	128
A 5.3.13	Auswahl der auszugebenden Messwerte	129
	A 5.3.13.1 Allgemein	129
	A 5.3.13.3 Liste der mögliche Signale für RS422	129
	A 5.3.13.4 Liste der ausgewählten Signale, Reihenfolge über RS422	129
A 5.3.14	Schaltausgänge	129
	A 5.3.14.1 Allgemein	129
	A 5.3.14.2 EITOI-SCHallausgange	129
	A 5.3.14.4 Setzen des auszuwertenden Signales	129
	A 5.3.14.5 Setzen der Grenzwerte	130
	A 5.3.14.6 Setzen des Wertes	130
	A 5.3.14.7 Schaltvernalten der Fehlerausgange	130
A 5 3 15	A 3.3.14.0 Schalthystelese der Fellerausgalige	130
	A 5.3.15.1 Datenauswahl	130
	A 5.3.15.2 Liste der möglichen Signale für den Analogausgang	130
	A 5.3.15.3 Ausgabebereich	130
	A 5.3.15.4 Einstellung der Skalierungsbereiches	131 131
A 5.3.16	Systemeinstellungen	131
	A 5.3.16.1 Tastensperre	131

A 5.4	Messwert-Format	
	A 5.4.1 Aufbau	
	A 5.4.2 Videosignal	
	A 5.4.3 Belichtungszeit	
	A 5.4.4 Encoder	
	A 5.4.5 Messwertzähler	
	A 5.4.6 Zeitstempel	
	A 5.4.7 Messdaten (Abstände und Intensitäten)	
	A 5.4.8 Triggerzeitdifferenz	
	A 5.4.9 Differenzen (Dicken)	
	A 5.4.10 Statistikwerte	
	A 5.4.11 Peaksymmetrie	
A 5.5	Mess-Datenformate	
	A 5.5.1 Datenformat RS422-Schnittstelle	
	A 5.5.1.1 Videodaten	
	A 5.5.1.2 Messwerte	
A 5.6	Warn- und Fehlermeldungen	
		100
A 6	leinet	
A 6.1	Allgemein	
A 6.2	Verbindungsaufbau	
A 6.3	Hilfe zu einem Befeni	
A 6.4	Feniermelaungen	
Α7	DHCP-Server, IP-Zuweisung	140
A 8	Dokumentation der Parameter	

1. Sicherheit

Die Systemhandhabung setzt die Kenntnis der Betriebsanleitung voraus.

1.1 Verwendete Zeichen

In dieser Betriebsanleitung werden folgende Bezeichnungen verwendet:

- **VORSICHT** Zeigt eine gefährliche Situation an, die zu geringfügigen oder mittelschweren Verletzungen führt, falls diese nicht vermieden wird.
 HINWEIS Zeigt eine Situation an, die zu Sachschäden führen kann, falls diese nicht vermieden wird.
- Zeigt eine ausführende Tätigkeit an.
- Zeigt einen Anwendertipp an.

Messung Zeigt eine Hardware oder eine(n) Schaltfläche/Menüeintrag in der Software an.

1.2 Warnhinweise

1

Schließen Sie die Spannungsversorgung und das Anzeige-/ Ausgabegerät nach den Sicherheitsvorschriften für elektrische Betriebsmittel an.

- > Verletzungsgefahr
- > Beschädigung oder Zerstörung des Controllers

Die Oberfläche des Sensors oder des Controllers erreicht bei Verwendung aller Schnittstellen eine Temperatur von über 50 °C.

> Verletzungsgefahr

HINWEIS

- Versorgungsspannung darf angegebene Grenzen nicht überschreiten.
 - > Beschädigung oder Zerstörung des Controllers

Vermeiden Sie Stöße und Schläge auf den Controller und den Sensor.

> Beschädigung oder Zerstörung der Komponenten

Knicken Sie niemals den Lichtwellenleiter, biegen Sie den Lichtleiter nicht in engen Radien.

> Beschädigung oder Zerstörung des Lichtwellenleiters, Ausfall des Messgerätes

Schützen Sie die Enden der Lichtwellenleiter vor Verschmutzung (Schutzkappen verwenden).

- > Fehlmessung
- > Ausfall des Messgerätes
- Schützen Sie die Kabel vor Beschädigung.
- > Ausfall des Messgerätes

1.3 Hinweise zur Produktkennzeichnung

1.3.1 Hinweise zur CE-Kennzeichnung

Für das Messsystem confocalDT IFD2410/2411/2415 gilt:

- EU-Richtlinie 2014/30/EU
- EU-Richtlinie 2011/65/EU

Produkte, die das CE-Kennzeichen tragen, erfüllen die Anforderungen der zitierten EU-Richtlinien und der jeweils anwendbaren harmonisierten europäischen harmonisierten Normen (EN). Das IFD241x ist ausgelegt für den Einsatz im Industrie- und Wohnbereich und erfüllt die Anforderungen.

Die EU-Konformitätserklärung wird gemäß der EU-Richtlinie, Artikel 10, für die zuständige Behörde zur Verfügung gehalten.

1.3.2 Hinweise zur UKCA-Kennzeichnung

Für das Messsystem confocalDT IFD2410/2411/2415 gilt:

- SI 2016 No. 1091:2016-11-16 The Electromagnetic Compatibility Regulations 2016
- SI 2012 No. 3032:2012-12-07 The Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment Regulations 2012

Produkte, die das UKCA-Kennzeichen tragen, erfüllen die Anforderungen der zitierten Richtlinien und der jeweils anwendbaren Normen. Das IFD241x ist ausgelegt für den Einsatz im Industriebereich.

Die UKCA-Konformitätserklärung und die technischen Unterlagen werden gemäß der UKCA-Richtlinien für die zuständigen Behörden zur Verfügung gehalten.

1.4 Bestimmungsgemäße Verwendung

- Das IFD241x ist für den Einsatz im Industriebereich konzipiert. Es wird eingesetzt zur
 - Weg-, Abstands-, Verschiebungs- und Dickenmessung,
 - Positionserfassung von Bauteilen oder Maschinenkomponenten
- Das IFD241x darf nur innerhalb der in den technischen Daten angegebenen Werte betrieben werden, siehe Kap. 2.4.
- Setzen Sie das IFD241x so ein, dass bei Fehlfunktionen oder Totalausfall des Sensors keine Personen gefährdet oder Maschinen beschädigt werden.
- Treffen Sie bei sicherheitsbezogener Anwendung zusätzlich Vorkehrungen für die Sicherheit und zur Schadensverhütung.

1.5 Bestimmungsgemäßes Umfeld

	confocalDT IFD2410/2415	confocalD	T IFD2411		
		Sensor	Controller		
Schutzart	IP64, frontseitig	IP64, frontseitig	IP40		
Temperaturbereich Betrieb	+5 +50 °C	+5 +70 °C	+5 +50 °C		
Temperaturbereich Lagerung	-20 +70 °C				
Luftfeuchtigkeit	5 95 % (nicht kondensierend)				
Umgebungsdruck:	Atmosphärendruck				
Schock (DIN-EN 60068-2-27)	15 g / 6 ms in XY-Achse, je 1000 Schocks				
Vibration (DIN-EN 60068-2-6)	2 g / 20 500 Hz in XY-Achse, je 10 Zyklen				
EMV	Gemäß EN 61000-6-3 / EN 61326-1 (Klasse B) Störaussendung; EN 61 000-6-2 / EN 61326-1 Störfestigkeit				

2. Funktionsprinzip, Technische Daten

2.1 Kurzbeschreibung

Die Messsysteme bestehen aus:

Beim IFD2410/2415 bilden Sensor und Controller eine Einheit. Ein Wechsel des Sensors ist nicht möglich.

Controller der Reihe IFC2411 können mit unterschiedlichen Sensoren betrieben werden. Die dazu erforderlichen Kalibriertabellen der Sensoren müssen im Controller hinterlegt sein.

Die Messsysteme verwenden eine Weißlicht-LED als interne Lichtquelle.

Der Sensor IFSxxx ist passiv, da er keine Wärmequellen oder beweglichen Teile beinhaltet. Dadurch wird eine wärmebedingte Ausdehnung vermieden, wodurch sich eine hohe Genauigkeit des Messverfahrens ergibt.

Der Controller wandelt die vom Sensor erhaltenen Lichtsignale mit einem Spektrometer um, berechnet Abstands- oder Dickenwerte über den integrierten Signalprozessor (CPU) und überträgt die gemessenen Daten über die Schnittstellen oder den Analogausgang.

2.2 Messprinzip

Polychromatisches Licht (Weißlicht) wird durch den Sensor auf die Messobjektoberfläche gestrahlt. Die Linsen des Sensors sind so gestaltet, dass durch kontrollierte chromatische Abweichungen jede Wellenlänge des verwendeten Lichtes in einem spezifischen Abstand fokussiert wird. Das von der Messobjektoberfläche reflektierte Licht wird auf umgekehrtem Weg durch den Sensor empfangen und zum Controller geleitet. Es folgt die spektrale Analyse und die Berechnung von Abständen anhand von im Controller gespeicherten Kalibrationsdaten.

Sensor und Controller bilden eine Einheit, da die Linearisierungstabelle des Sensors im Controller gespeichert ist. 1

Dieses einzigartige Messprinzip erlaubt es Anwendungen hochpräzise zu messen. Es können sowohl diffuse als auch spiegelnde Oberflächen erfasst werden. Bei transparenten Schicht-Materialien kann neben der Wegmessung eine direkte Dickenmessung erfolgen. Da Sender und Empfänger in einer Achse angeordnet sind, werden Abschattungen vermieden.

Aufgrund der hervorragenden Auflösung und des geringen Lichtfleckdurchmessers können Oberflächenstrukturen gemessen werden. Zu beachten ist jedoch, dass Messwertabweichungen auftreten können, sobald die Struktur in der Größenordnung des Lichtfleckdurchmessers liegt oder die zulässige Verkippung, zum Beispiel an Rillenflanken, überschritten wird.

2.3 Begriffsdefinition, Glossar

- MBA Messbereichsanfang. Für den Sensor muss ein Messbereichsanfang (MBA) zum Messobjekt eingehalten werden. Minimaler Abstand zwischen Sensorstirnfläche und Messobjekt
- MBM Messbereichsmitte
- MBE Messbereichsende (Messbereichsanfang + Messbereich)

Maximaler Abstand zwischen Sensorstirnfläche und Messobjekt

MB Messbereich

Abb. 1 Messbereich und Ausgangssignal Messsystem

Minimale Messobjektdicke siehe Kapitel Technische Daten

Maximale Messobjektdicke Sensormessbereich x Brechungsindex Messobjekt

2.4 Technische Daten confocalDT IFD2410

Modell			IFD2410-1	IFD2410-3	IFD2410-6		
Messbereich			1,0 mm	3,0 mm	6,0 mm		
Messbereichsanfang ca.		ca.	ca. 15 mm	ca. 25 mm	ca. 35 mm		
statisch ¹		statisch ¹	< 12 nm < 36 nm <		< 80 nm		
Autosung		dynamisch ²	< 50 nm	< 125 nm	< 250 nm		
Messrate			stuf	enlos einstellbar von 100 Hz bis 8	kHz		
Linearität ³ Al		bei Weg- und tandsmessung	$<\pm0,5\mu{ m m}$	< ±1,5 µm	$<\pm3,0\mu{ m m}$		
	bei D	ickenmessung	< ±1,0 µm	$<\pm$ 3,0 μ m	$<\pm$ 6,0 μ m		
Lichtquelle				interne weiße LED			
Zulässiges I	Fremdlicht			30.000 lx			
Lichtpunktd	urchmesse	er ⁴	12 µm	18 µm	24 µm		
Messwinkel	5		±25°	±19°	±10°		
Numerische	e Apertur (N	JA)	0,45	0,35	0,18		
Mindestdick	ke Messobj	ekt	0,05 mm	0,15 mm	0,3 mm		
Messobjekt	material		Spiegelnde, di	ffuse sowie transparente Oberfläc	chen (z.B. Glas)		
Versorgung	sspannung]		24 VDC ±10 %			
Leistungsau	ufnahme		<5 W (24 V)				
Signaleingang			2 x Encoder (A+, A-, B+, B-, Index); 3 x Encoder (A+, A-, B+, B-) 2 x HTL/TTL Multifunktionseingang: Trigger in, Slave in, Nullsetzen, Mastern, Teachen; 1 x RS422 Synchronisationseingang: Trigger in, Sync in, Master/Slave, Master/Slave alternierend				
Digitale Sch	nittstelle		EtherCAT / PROFINE	T / EtherNet/IP / RS422 / Etherne	t (zur Parametrierung)		
Analogausg	jang		4 20 mA / 0 5 V / 0 10 V (16 bit D/A Wandler)				
Schaltausga	ang		Fehler1-Out, Fehler2-Out				
Digitalausga	ang		Sync out				
Anschluss			12 pol. M12 Stecker für Versorgung, Encoder, EtherCAT, PROFINET, EtherNet/IP, RS422 und Sync 17 poliger M12 Stecker für I/O Analog und Encoder optionale Verlängerung auf 3 m / 6 m / 9 m / 15 m möglich (passende Anschlusskabel siehe Zubehör)				
Montage			Radialklemmung, (Gewindebohrungen (Montageada	pter siehe Zubehör)		
Tomporatur	ooroich	Lagerung	-20 +70 °C				
lemperaturi	Jereich	Betrieb	+5 +50 °C				
Schock (DIN EN 60068-2-27)			15 g / 6 ms in XY-Achse, je 1000 Schocks				
Vibration (DIN EN 60068-2-6)		68-2-6)	2 g / 20 500 Hz in XY-Achse, je 10 Zyklen				
Schutzart (E	DIN EN	Sensor		IP64 (frontseitig)			
60529) Controller		Controller	IP65				
Material				Aluminiumgehäuse, passiv geküh	lt		
Gewicht			490 g	490 g	490 g		
Bedien- und Anzeigeelemente		lemente	Correct Taste: Schnittstellenauswahl, zwei einstellbare Funktionen sowie Reset auf Werkseinstel- lung nach 10 s; 4x Farb-LED für Intensity, Range, MS und NS				

Alle Daten ausgehend von konstanter Raumtemperatur (24 ±2 °C)

1) Gemittelt über 512 Werte, bei 1 kHz, in Messbereichsmitte auf Prüfglas

2) RMS Rauschen bezogen auf Messbereichsmitte (1 kHz)

3) Maximale Abweichung zu Referenzsystem über den gesamten Messbereich, gemessen auf Vorderfläche ND-Filter

4) In Messbereichsmitte

5) Maximale Verkippung des Sensors, bis zu der auf einem polierten Glas (n = 1,5) in der Messbereichsmitte ein verwertbares Signal erzielt werden kann, wobei die Genauigkeit zu den Grenzwerten abnimmt

2.5 Technische Daten confocalDT IFD2415

Modell			IFD2415-1	IFD2415-3	IFD2415-10		
Messbereich			1,0 mm	3,0 mm	10,0 mm		
Messbereichsanfang ca.		ca.	ca. 10 mm	ca. 20 mm	ca. 50 mm		
Auflägung		statisch ¹	< 8 nm	< 15 nm	< 36 nm		
Autiosung		dynamisch ²	< 38 nm	< 80 nm	< 204 nm		
Messrate			stufe	nlos einstellbar von 100 Hz bis 25	5 kHz		
Linearität ³	Ab	bei Weg- und standsmessung	< ±0,25 µm	$<\pm0,75\mu{ m m}$	$<\pm2,5\mu{ m m}$		
	bei l	Dickenmessung	$<\pm0,5\mu{ m m}$	< ±1,5 µm	$<\pm$ 5,0 μ m		
Lichtquelle				interne weiße LED			
Zulässiges I	Fremdlicht			30.000 lx			
Lichtpunktd	urchmesse	er ⁴	8 <i>µ</i> m	9 <i>µ</i> m	16 µm		
Messwinkel	5		±30°	±24°	±17°		
Numerische	e Apertur (N	NA)	0,55	0,45	0,3		
Mindestdick	ke Messobj	jekt	0,05 mm	0,15 mm	0,5 mm		
Messobjekt	material		Spiegelnde, di	fuse sowie transparente Oberfläc	hen (z.B. Glas)		
Versorgung	sspannung]	24 VDC ±10 %				
Leistungsau	Ifnahme		<7W (24 V)				
Signaleingang			2 x Encoder (A+, A-, B+, B-, Index); 3x Encoder (A+, A-, B+, B-) 2 x HTL/TTL Multifunktionseingang: Trigger in, Slave in, Nullsetzen, Mastern, Teachen; 1 x RS422 Synchronisationseingang: Trigger in, Sync in, Master/Slave, Master/Slave alternierend				
Digitale Sch	inittstelle		EtherCAT / PROFINET / Ethernet/IP / RS422 / Ethernet (zur Parametrierung)				
Analogausg	lang		4 20 mA / 0 5 V / 0 10 V (16 bit D/A Wandler)				
Schaltausga	ang		Fehler1-Out, Fehler2-Out				
Digitalausga	ang		Sync out				
Anschluss			12 pol. M12 Stecker für Versorgung, Encoder, EtherCAT, PROFINET, Ethernet/IP, RS422 und Sync 17 poliger M12 Stecker für I/O Analog und Encoder optionale Verlängerung auf 3 m / 6 m / 9 m / 15 m möglich (passende Anschlusskabel siehe Zubehör)				
Montage			Radialklemmung, G	Gewindebohrungen (Montageada	oter siehe Zubehör)		
Tanan araturk	a a rai a b	Lagerung	-20 +70 °C				
Iemperatur	Dereich	Betrieb	+5 +50 °C				
Schock (DIN EN 60068-2-27)		8-2-27)	15 g / 6 ms in XY-Achse, je 1000 Schocks				
Vibration (DIN EN 60068-2-6)		68-2-6)	2 g / 20 500 Hz in XY-Achse, je 10 Zyklen				
Schutzart		Sensor	IP64 (frontseitig)				
(DIN EN 605	529)	Controller		IP65			
Material		,	A	Aluminiumgehäuse, passiv geküh	lt		
Gewicht			ca. 500 g	ca. 600 g	ca. 800 g		
Bedien- und Anzeigeelemente		lemente	Correct Taste: Schnittstellenauswahl, zwei einstellbare Funktionen sowie Reset auf Werkseinstel- lung nach 10 s; 4x Farb-LED für Intensity, Range, MS und NS				

Alle Daten ausgehend von konstanter Raumtemperatur (24 ±2 °C)

1) Gemittelt über 512 Werte, bei 1 kHz, in Messbereichsmitte auf Prüfglas

2) RMS Rauschen bezogen auf Messbereichsmitte (1 kHz)

3) Maximale Abweichung zu Referenzsystem über den gesamten Messbereich, gemessen auf Vorderfläche ND-Filter

4) In Messbereichsmitte

5) Maximale Verkippung des Sensors, bis zu der auf einem polierten Glas (n = 1,5) in der Messbereichsmitte ein verwertbares Signal erzielt werden kann, wobei die Genauigkeit zu den Grenzwerten abnimmt

2.6 Technische Daten confocalDT IFD2411

Modell		IFD2411-1	IFD2411-2	IFD2411/90-2	IFD2411-3	IFD2411-6	
Messbereich	Abstand	1,0 mm	2,0 mm	2,0 mm	3,0 mm	6,0 mm	
Messbereichsanfang	ca.	15 mm	14 mm	9,6 mm ¹	25 mm	35 mm	
Auflägung	statisch ²	< 12 nm	< 40 nm	< 40 nm	< 40 nm	< 80 nm	
Auliosung	dynamisch ³	< 50 nm	< 125 nm	< 125 nm	< 125 nm	< 250 nm	
Messrate			stufenlos e	instellbar von 100 H	lz bis 8 kHz		
Lingerität 4	Abstand	$<\pm$ 0,5 μ m	< ±1,0 µm	< ±1,0 µm	< ±1,5 µm	$<\pm$ 3,0 μ m	
Lineantat	Dicke	$<\pm$ 1,0 μ m	< ±2,0 µm	< ±2,0 µm	< ±3,0 µm	< ±6,0 µm	
Mehrschichtmessung				1 Schicht			
Lichtquelle				interne weiße LED			
Anzahl Kennlinien			Ablage von bis zu Ausw	10 Kennlinien verscl ahl über Tabelle im	niedener Sensoren, Menü		
zulässiges Fremdlicht	5			30.000 lx			
Lichtpunktdurchmess	er	12 <i>µ</i> m	10 <i>µ</i> m	10 <i>µ</i> m	18 <i>µ</i> m	24 <i>µ</i> m	
Maximaler Messwinke	9 ⁶	±25°	±12°	±12°	±19°	±10°	
Numerische Apertur (NA)	0,45	0,25	0,25	0,35	0,18	
Mindestdicke Messob	ojekt ⁷	0,05 mm	0,1 mm	0,1 mm	0,15 mm	0,3 mm	
Messobjektmaterial		Sp	biegelnde, diffuse so	owie transparente O	berflächen (z.B. Gla	as)	
Synchronisation		ja					
Versorgungsspannun	g	24 VDC ±10 %					
Leistungsaufnahme		<7 W (24 V)					
Signaleingang		Sync-In / Trig-In; 1 x Encoder (A+, A-, B+, B-, Index)					
Digitale Schnittstelle		PROFINET / RS422 / Ethernet (zur Parametrierung)					
Analogausgang		Strom: 4 20 mA; Spannung: 0 5V & 0 10 V (16 bit D/A Wandler)					
Digitalausgang		Sync-Out					
	optisch	steckbarer Lichtwellenleiter über E2000-Buchse, Länge 2 m 50 m, min. Biegeradius 30 mm					
Anschluss	elektrisch	3-polige Versorgungsklemmleiste; 5-polige I/O Klemmleiste (max. Kabellänge 30 m); 17 poliger M12 Stecker für RS422, Analog und Encoder; RJ45-Buchse für Industrial Ethernet, max. Kabellänge 100 m					
Montage		frei stehend, Hutschienenmontage					
Tomporaturboroich	Lagerung	-20 +70 °C					
Temperaturbereich	Betrieb	Sensor: +5 +70 °C Controller: +5 +50 °C					
Schock (DIN-EN6006	8-2-27)	15g / 6 ms in XYZ-Achse, je 1000 Schocks					
Vibration (DIN-EN600	68-2-6)	2 g / 20 500 Hz in XYZ-Achse, je 10 Zyklen					
Schutzart (DIN-	Sensor	IP64					
EN60529)	Controller			IP40			
Material				Aluminium			
Gewicht	Sensor	ca. 100 g	ca. 20 g	ca. 30 g	ca. 100 g	ca. 100 g	
Gewient	Controller			ca. 335 g			
Anzahl Messkanäle ⁸				1			
Bedien- und Anzeigeelemente		Multifunktionstaste: Schnittstellenauswahl, zwei einstellbare Funktionen sowie Reset auf Werkseinstellung nach 10 s; 4x Farb-LED für Intensity, Range, MS und NS					

d.M. = des Messbereichs

1) Messbereichsanfang ab Sensorachse gemessen

2) Gemittelt über 512 Werte, bei 1 kHz, in Messbereichsmitte auf Prüfglas

3) RMS Rauschen bezogen auf Messbereichsmitte (1 kHz)

4) Alle Daten ausgehend von konstanter Raumtemperatur (25 ±1 °C) bei Messung auf planparalleles Prüfglas; bei anderen Messobjekten können die Daten abweichen

5) Lichtart: Glühlampe

6) Maximaler Messwinkel des Sensors, bis zu dem auf spiegelnden Oberflächen ein verwertbares Signal erzielt werden kann, wobei die Genauigkeit zu den Grenzwerten abnimmt

7) Glasscheibe mit Brechungsindex n = 1,5 in Messbereichsmitte

8) Keine Einbußen in der Intensität und Linearität durch zwei synchrone Messkanäle

confocalDT IFD2410/2411/2415 / EtherNET/IP

3. Lieferung

3.1 Lieferumfang confocalDT IFD2410/2415

1 Sensor IFD241x-x

1 PC2415-1/Y Länge 1 m

1 Abnahmeprotokoll

1 Benutzerhandbuch

- Nehmen Sie die Teile des Messsystems vorsichtig aus der Verpackung und transportieren Sie sie so weiter, dass keine Beschädigungen auftreten können.
- Prüfen Sie die Lieferung nach dem Auspacken sofort auf Vollständigkeit und Transportschäden.
- Wenden Sie sich bitte bei Schäden oder Unvollständigkeit sofort an den Hersteller oder Lieferanten.

3.2 Lieferumfang confocalDT IFD2411

- 1 Controller IFC2411
- 1 Sensor IFS2404-x
- 1 RJ Patchkabel Cat5

1 Abnahmeprotokoll

- 1 Benutzerhandbuch
- Nehmen Sie die Teile des Messsystems vorsichtig aus der Verpackung und transportieren Sie sie so weiter, dass keine Beschädigungen auftreten können.
- Prüfen Sie die Lieferung nach dem Auspacken sofort auf Vollständigkeit und Transportschäden.
- Wenden Sie sich bitte bei Schäden oder Unvollständigkeit sofort an den Hersteller oder Lieferanten.

3.3 Lagerung

Temperaturbereich Lager: -20 ... +70 °C

Luftfeuchtigkeit: 5 ... 95 % (nicht kondensierend)

2 m

- Schützen Sie die Linse des Sensors vor Verschmutzung.
- 1 Schützen Sie die Enden des Sensorkabels (Lichtwellenleiter) vor Verschmutzung (gilt für das IFD2411).

4. Montage

4.1 Vorbemerkung

Die optischen Sensoren/Messsysteme der Serie confocalDT IFD2410/2411/2415 messen im Nanometer-Bereich. Beachten Sie die maximale Verkippung zwischen Sensor und Messobjekt.

• Achten Sie bei Montage und Betrieb auf sorgsame Behandlung!

4.2 confocalDT IFD2410/2415

4.2.1 Umfangsklemmung

Montieren Sie das IFD241x mit Hilfe eines Montageadapters.

Abb. 2 Umfangsklemmung mit Montagering MA240x, bestehend aus Montageblock und Montagering

Micro-Epsilon empfiehlt, die Umfangsklemmung zu verwenden.

Montagering	Мав А	Мав В	Маß С
MA2400-27	ø27	ø46	19,75
MA2405-34	ø34	ø50	22
MA2405-54	ø54	ø70	32

Abb. 3 Montageblock und Montagering MA240x

4.2.2 Direktverschraubung

Montieren Sie das IFD241x über 3 Schrauben M3.

Abb. 4 Montagebedingungen IFD2410 / IFD2415

IFD2410-	1	3	6	IFD2415-	1	3	10
MB	1	3	6	MB	1	3	10
MBA	15	25	35	MBA	10	20	50
A		56		A	82	85	118
В	33		В	59	62		
С		150		С	176	179	212
D	27		D	27	34	54	

Maße in Millimeter

Abb. 5 Maßzeichnung IFD2410 / IFD2415, Maße in mm

Die Auflageflächen rings um die Befestigungsbohrungen sind leicht erhöht.

4.2.3 Elektrische Anschlüsse, Anschlussbelegung

Abb. 6 Anschlussbeispiele am confocalDT IFD2410/2415

IFD2410/2415, 12-pol Stecker			PC2415-x/OE	PC241	5-1/Y	IF2001
Signal		Pin	Adernfarbe	Adernfarbe	RJ45, Pin	Signal
V ₊		1	Rot	Rot		24VDC
Versorgun	gs-GND	2	Blau	Blau		GND
Data Rx+	Encoder 2A+ 1	3	Braun	Braun		Tx+
Data Rx-	Encoder 2A-	4	Weiß	Weiß		Tx-
Data Tx+	Encoder 2B+	5	Grün	Grün		Rx+
Data Tx-	Encoder 2B+	6	Gelb	Gelb		Rx-
SYNC+	Encoder 2Ref+	7	Grau	Grau		
SYNC-	Encoder 2Ref-	8	Rosa	Rosa		
Schirm		Gehäuse	Schwarz	Schwarz		
Industrial Ethernet		9	Weiß/Grün		3	
		10	Grün		6	
		11	Weiß/Orange		1	
		12	Orange		2	

Abb. 7 Anschlussbelegung 12-pol Sensorstecker

Das Kabel PC2415-1/Y ist im Lieferumfang enthalten.

Abb. 8 12-pol Sensorstecker, Pinseite

1) Die Pins können wahlweise für

- eine serielle Kommunikation (TIA/EIA-422-B) und Synchronisation oder

- für Encoder-Signale genutzt werden.

IFD2410/2415, 17-pol Steck	er	SC2415-x/OE
Signal	Pin	Adernfarbe
Analog Ausgang	1	Weiß, innenliegend
Analog GND	2	Schwarz
Schaltausgang 2 GND	3	Schwarz
Schaltausgang 2	13	Violett
Multifunktionseingang 1	5	Rot
Multifunktionseingang 2	14	Blau
Encoder 1B+	8	Grau
Encoder 1B-	15	Rosa
Encoder 1Ref+	9	Grün
Encoder 1Ref-	16	Gelb
Schaltausgang 1 GND	10	Braun
Schaltausgang 1	11	Weiß
Encoder 1A-	12	Rot/Blau
Encoder 1A+	17	Grau/Rosa
Schirm	Gehäuse	Schwarz

Das Kabel SC2415-x/OE ist als optionales Zubehör erhältlich.

Abb. 9 17-pol Sensorstecker, Pinseite

Abb. 10 Anschlussbelegung 17-pol Sensorstecker

4.2.4 Massekonzept, Schirmung

Alle Ein- und Ausgänge sind galvanisch mit der Versorgungsmasse (Versorgung-GND) verbunden; die Anschlüsse von EtherNet/IP sind potentialfrei.

Die Masseanschlüsse (Versorgungs-GND, Schaltausgang GND und Analog GND) jeder Anschlussgruppe sind galvanisch über Filter intern miteinander verbunden.

Die Shield-Anschlüsse jeder Anschlussgruppe sind nur mit dem Controllergehäuse verbunden. Sie dienen zum Anschluss der Kabelabschirmungen bei Einzelanschlüssen (Power, Analogausgang, Schaltausgänge, Synchronisation und Triggereingang).

- Verwenden Sie aus Gründen der Störsicherheit für den Analogausgang und die
- beiden Schaltausgänge den zugehörigen GND-Anschluss.
 Verwenden Sie nur geschirmte Kabel mit einer Länge von kleiner 30 m und schließen Sie die Kabelabschirmung an Shield oder den Steckergehäusen an.

4.2.5 Versorgungsspannung (Power)

Nennwert: 24 V DC (20 ... 28 V, P < 7 W).

Die Versorgung des Sensors erfolgt über das Kabel PC2415-1/Y oder PC2415-x/OE.

20 28 VDC IFD2410	IFD2410/2415 12-pol Stecker	Versorgung	PC2415-1/Y PC2415-x/OE
IFD2415	1	V ₊	Rot
2	2	GND	Blau

Schalten Sie das Netzteil erst nach Fertigstellung der Verdrahtung ein.

Verbinden Sie die Eingänge Pin 1 und Pin 2 am Sensor mit einer 24 V-Spannungsversorgung.

• Spannungsversorgung nur für Messgeräte, nicht gleichzeitig für Antriebe oder ähnliche Impulsstörquellen verwenden. MICRO-EPSILON empfiehlt die Verwendung des optional erhältlichen Netzteils PS2020 für den Sensor.

4.2.6 RS422

Neben Industrial Ethernet unterstützt das IFD2410/2415 auch eine serielle Kommunikation via RS422. Eine serielle Kommunikation ist möglich mit den Kabeln PC2415-1/Y oder PC2415-x/OE. Der RS422-zu-USB-Konverter IF2001/USB ist als optionales Zubehör erhältlich.

- Differenzsignale nach EIA-422, galvanisch mit Versorgungsspannung verbunden.
- Receiver Rx mit internem Abschlusswiderstand 120 Ohm.
- Verwenden Sie ein geschirmtes Kabel mit verdrillten Adern. Kabellänge kleiner 30 m.
- Verbinden Sie die Masseanschlüsse.

IFD2410/2415 12-pol Stecker	Signal	PC2415-1/Y PC2415-x/OE	IF2001/USB
3	RX +	Braun	TX +
4	RX -	Weiß	TX -
2	Versorgu	ings-GND (Blau)	GND
5	TX +	Grün	RX +
6	TX -	Gelb	RX -
Gehäuse	Schirm	Kabelschirm	

4.2.7 Ethernet, EtherNET/IP

Verbindung

- mit einem Ethernet-Netzwerk (PC) oder
- mit dem Bussystem.

IFD2410/2415, 12-pol Stecker		PC2415-x/OE	PC2415-1/Y	12-pol. Stecker	PC2415-1/Y
Signal	Pin	Adernfarbe	RJ45, Pin		
Industrial Ethernet	9	Weiß/Grün	3		
	10	Grün	6		
	11	Weiß/Orange	1		
	12	Orange	2		

Verbinden Sie das IFD2410/2415 und Netzwerk mit einem geschirmten Ethernetkabel (Cat5E, Patchkabel 2 m aus dem Lieferumfang, Gesamtkabellänge kleiner 30 m).

Die beiden LEDs MS und NS zeigen die erfolgreiche Verbindung und deren Aktivität an.

Die Konfiguration des Messgerätes kann über Objekte (EtherNet/IP), die Weboberfläche oder durch ASCII-Befehle auf Kommandoebene (z. B. Telnet) erfolgen.

4.2.8 Analogausgang

Der alternative Analogausgang (Spannung oder Strom) liegt am 17-pol. Sensorstecker an und ist mit der Versorgungsspannung galvanisch verbunden.

IFD2410/2415, 17-pol Steck	SC2415-x/OE	
Signal	Pin	Adernfarbe
Analog Ausgang	1	Weiß, innenliegend
Analog GND	2	Schwarz ¹

Spannung: Pin *V*/*I*_{out} und Pin GND,

 $R_{\rm i}$ ca. 50 Ohm, $R_{\rm L}$ > 10 MOhm

Slew rate (ohne $C_V, R_L \ge 1$ kOhm) typ. 0,5 V/ μ s

Slew rate (mit $C_V = 10 \text{ nF}, R_L \ge 1 \text{ kOhm}$) typ. 0,4 V/ μ s

Strom: Pin U/Iout und Pin GND

 $R_{\rm B} \le 500 \; {\rm Ohm}$

Slew rate (ohne C_{I} , R_{B} = 500 Ohm) typ. 1,6 mA/ μ s

Slew rate (mit C_{I} = 10 nF, R_{B} = 500 Ohm) typ. 0,6 mA/ μ s

Verwenden Sie ein geschirmtes Kabel. Kabellänge kleiner 30 m.

Der Ausgabebereich kann alternativ auf die folgenden Werte gesetzt werden:

Spannung: 0 ... 5 V; 0 ... 10 V;

Strom: 4 ... 20 mA.

Die Messwerte können nur als Spannung oder Strom ausgegeben werden.

1) Analogausgang in geschirmten Kabelbereich

4.2.9 Multifunktionseingänge

Zum Schalten eignen sich z. B. ein Schalttransistor mit offenem Kollektor (zum Beispiel in einem Optokoppler), ein Relaiskontakt oder auch ein digitales TTL- bzw. HTL-Signal.

Die Eingänge sind nicht galvanisch getrennt. 24V-Logik (HTL): Low \leq 3 V; High \geq 8 V (max 30 V), 5V-Logik (TTL): Low \leq 0,8 V; High \geq 2 V Minimale Impulsbreite 50 μ s Interner Pull-up-Widerstand, ein offener Eingang wird als High erkannt. Maximale Schaltfrequenz 25 kHz

Es ist kein externer Widerstand zur Strombegrenzung erforderlich. Die Masse der Logikschaltung muss mit der Versorgungsmasse galvanisch verbunden sein.

4.2.10 Schaltausgänge (Digital I/O)

Die GND-Anschlüsse der Schaltausgänge sind durch Filter von Versorgungs-GND getrennt.

Das Schaltverhalten (NPN, PNP, Push-Pull) ist programmierbar, I_{max} 100 mA.

Die Hilfsspannung für einen Schaltausgang mit NPN-Schaltverhalten darf maximal 28 V betragen.

Abb. 11 Ausgangsverhalten und Beschaltung der TTL-Schaltausgänge Error 1/2

IFD2410/2415, 17-pol Steck	SC2415-x/OE	
Signal	Pin	Adernfarbe
Schaltausgang 2 GND	3	Schwarz
Schaltausgang 2	13	Violett
Schaltausgang 1 GND	10	Braun
Schaltausgang 1	11	Weiß

Alle GND sind untereinander und mit der Versorgungsmasse verbunden.

Verwenden Sie ein geschirmtes Kabel. Kabellänge kleiner 30 m.

Ausgangspegel (ohne Lastwiderstand) bei einer Versorgungsspannung von 24 VDC	Low < 1 V; High > 23 V
Sättigungsspannung	Low < 2,5 V (Ausgang - GND)
bei I max = 100 mA	High < 2,5 V (Ausgang - + $V_{\rm B}$)

Die Sättigungsspannung wird

- zwischen Ausgang und GND, bei Ausgang = Low, oder
- zwischen Ausgang und $V_{\rm B}$, bei Ausgang = High, gemessen.

Bezeichnung	Ausgang aktiv (Fehler)	Ausgang passiv (kein Fehler)
NPN (Low side)	GND	+ V _B
PNP (High side)	+ V _B	GND
Push-Pull	+V _B	GND
Push-Pull, negativ	GND	+ V _B

Abb. 12 Schaltverhalten der Schaltausgänge

HINWEIS Der Lastwiderstand R_L kann entsprechend den Grenzwerten ($I_{max} = 100 \text{ mA}, V_{Hmax} = 28 \text{ V}$) dimensioniert werden.

Bei Anschluss induktiver Lasten, z. B. ein Relais, darf die parallele Schutzdiode nicht fehlen.

4.2.11 Synchronisation (Ein-/Ausgänge)

4.2.11.1 Allgemein

- Die Pins Sync+ und Sync- am 12-pol. Sensorstecker: Symmetrischer Aus-/Eingang für Synchronisation von zwei oder mehreren Sensoren
- Die Pins Multifunktionseingang 1 oder Multifunktionseingang 2 am 17-pol. Sensorstecker: Eingang für Synchronisation eines Sensors mit einer externen Synchronquelle z. B. Funktionsgenerator
- Der Terminierungswiderstand R_{T} (120 Ohm) kann via Software zu- oder abgeschaltet werden.

4.2.11.2 Interne Synchronisation

Ein IFD2410/2415 (Master) synchronisiert ein oder weitere Sensoren (Slaves).

IFD2410/2415, 12-pol Stecker				PC2415-x/OE	PC2415-1/Y
Signal	Pin	Pegel		Adernfarbe	Adernfarbe
Versorgungs-GND	2		1	Blau	Blau
SYNC+	7	RS422 (EIA422)		Grau	Grau
SYNC-	8			Rosa	Rosa

Abb. 13 Anschlüsse und Signalpegel interne Synchronisation

Aktivieren Sie im letzten Sensor (Slave n) in der Kette den Terminierungswiderstand (120 Ohm).

Sternsynchronisierung

- Verbinden Sie die Pins Sync+ und Sync- von Sensor 1 (Master) sternförmig mit den Pins Sync+ und Sync- von Sensor 2 (Slave) bis Sensor n, um zwei oder mehrere Sensoren miteinander zu synchronisieren, siehe Abb. 14
- Teilleitungslänge kleiner 30 m bei Sternsynchronisierung

Kettensynchronisierung

- Verbinden Sie die Pins Sync+ und Sync- von Sensor 1 (Master) mit den Pins Sync+ und Sync- von Sensor 2 (Slave 1). Verbinden Sie die Pins nachfolgender Sensoren, um zwei oder mehrere Sensoren miteinander zu synchronisieren, siehe Abb. 14
- Gesamtleitungslänge 30 m bei Kettensynchronisierung
- Verwenden Sie geschirmte Kabel mit verdrillten Adern.
- Schließen Sie den Kabelschirm am Gehäuse an.
- **Programmieren Sie den Sensor 1 auf** Master **und alle anderen Sensoren auf** Slave.

Abb. 14 Synchronisierung mehrerer Sensoren, links sternförmig, rechts verkettet

- Verbinden Sie alle GND-Anschlüsse der Versorgung untereinander, falls die Sensoren nicht von einer gemeinsamen Spannungsversorgung gespeist werden.
- Werden die Sensoren über die EtherNet/IP-Schnittstelle betrieben, dann kann eine Synchronisation auch ohne die
- Sync-Leitung realisiert werden.

4.2.11.3 Externe Synchronisation

Eine externe Synchronquelle synchronisiert ein oder weitere IFD2410/2415 (Slaves).

IFD2410/2415, 17-pol Ste	SC2415-x/OE			
Signal	Pin	Pe	Adernfarbe	
Multifunktionseingang 1	5	TTL Low-Pegel ≤ 0,8 V;	HTL Low-Pegel ≤ 3 V;	Rot
Multifunktionseingang 2	14	High-Pegel $\ge 2 \text{ V}$ Minimale Impulsbreite 50 μ s	High-Pegel \geq 8 V (max. 30 V) Minimale Impulsbreite 50 μ s	Blau

IFD2410/2415, 12-pol Ste	cker	PC2415-x/OE	PC2415-1/Y
Signal	Pin	Adernfarbe	Adernfarbe
Versorgungs-GND	2	Blau	Blau

Abb. 15 Anschlüsse und Signalpegel externe Synchronisation

Aktivieren Sie im letzten Sensor (Slave n) in der Kette den Terminierungswiderstand (120 Ohm).

Sternsynchronisierung

- Verbinden Sie den Pin Multifunktionseingang 1 oder 2 von Slave 1 mit der externen Synchronquelle.
- Verbinden Sie Versorgungs-GND des Sensors mit dem Masseanschluss der Synchronquelle.

Weitere Sensoren können im selben Schema synchronisiert werden.

- Teilleitungslänge kleiner 30 m bei Sternsynchronisierung
- Servenden Sie geschirmte Kabel mit verdrillten Adern.
- Schließen Sie den Kabelschirm am Gehäuse an.
- **Programmieren Sie alle Sensoren auf** Slave.

Abb. 16 Synchronisierung mehrerer Sensoren, sternförmig

- Verbinden Sie alle GND-Anschlüsse der Versorgung untereinander, falls die Sensoren nicht von einer gemeinsamen Spannungsversorgung gespeist werden.
- Werden die IFD2410/2415 über die EtherNet/IP-Schnittstelle betrieben, dann kann eine Synchronisation auch ohne
- l die Sync-Leitung realisiert werden.

4.2.12 Triggerung

4.2.12.1 Allgemein

Eine Triggerung der Messwertaufnahme oder -messwertausgabe ist mit

- den Multifunktionseingängen 1/2,
- den Synchroneingängen Sync+ und Sync-,
- Encoder 1 möglich.
- Verwenden Sie ein geschirmtes Kabel mit verdrillten Adern. Kabellänge kleiner 30 m.

Als Triggerquelle können Schaltkontakte, Transistoren (NPN, N-Kanal FET) oder SPS-Ausgänge dienen.

4.2.12.2 Triggerung mit Multifunktionseingang

IFD2410/2415, 17-pol Ste	SC2415-x/OE						
Signal	Pin	Pe	Pegel				
Multifunktionseingang 1	5	TTL Low-Pegel ≤ 0,8 V;	HTL Low-Pegel ≤ 3 V;	Rot			
Multifunktionseingang 2	14	High-Pegel $\ge 2 \text{ V}$ Minimale Impulsbreite 50 μ s	High-Pegel \geq 8 V (max. 30 V) Minimale Impulsbreite 50 μ s	Blau			

Verbinden Sie den Pin Multifunktionseingang 1 oder 2 mit der externen Triggerquelle.

Verbinden Sie Versorgungs-GND des Sensors mit dem Masseanschluss der externen Triggerquelle.

Die Anschlüsse Multifunktionseingang des Sensors sind auf die Funktion Triggereingang zu programmieren.

4.2.12.3 Triggerung mit Synchroneingang

IFD2410/2415, 12-pol Stecker				PC2415-x/OE	PC2415-1/Y
Signal	Pin	Pegel		Adernfarbe	Adernfarbe
SYNC+	7	RS422 (EIA422)		Grau	Grau
SYNC-	8			Rosa	Rosa

Verbinden Sie die Pins Sync+ und Sync- mit der externen Triggerquelle.

Die Sync-Anschlüsse des Sensors sind auf die Funktion Triggereingang zu programmieren.

Die Triggerquelle (Master) muss ein symmetrisches Ausgangssignal gemäß der Norm RS422 liefern. Für unsymmetrische Triggerquellen empfiehlt Micro-Epsilon den Pegelwandler SU4 (3 Kanäle TTL/HTL auf RS422) zwischen Triggersignalquelle und Sensor zu schalten.

4.2.12.4 Triggerung mit Eingang Encoder 1

Ein angeschlossener Encoder an den Eingängen Encoder 1 kann zur Triggerung verwendet werden.

IFD2410/2415, 17-p	ol Stecker		SC2415-x/OE
Signal	Pin	Pegel	Adernfarbe
Encoder 1B+	8	RS422 (EIA422)	Grau
Encoder 1B-	15		Rosa
Encoder 1A-	12		Rot/Blau
Encoder 1A+	17		Grau/Rosa

Die Encoder-Anschlüsse des Sensors sind auf die Funktion Triggereingang zu programmieren.

4.2.13 Encodereingänge

Das Messsystem unterstützt bis zu drei Encoder.

Zwei Encodereingänge:

- Inkrementalsignale A, B
- Referenzimpuls

Die maximale Pulsfrequenz beträgt 1 MHz.

RS422-Pegel (symmetrisch) für A, B, Ref

IFD2410/2415, 12-pol Stecker		PC2415-x/OE	PC2415-1/Y
Signal	Pin	Adernfarbe	Adernfarbe
Versorgungs-GND	2	Blau	Blau
Encoder 2A+ ¹	3	Braun	Braun
Encoder 2A-	4	Weiß	Weiß
Encoder 2B+	5	Grün	Grün
Encoder 2B+	6	Gelb	Gelb
Encoder 2Ref+	7	Grau	Grau
Encoder 2Ref-	8	Rosa	Rosa

Abb	17 Anschlussbeleauna	für zwei Encodereingänge	
100.	i i i i i i i i i i i i i i i i i i i	iai zwoi Erioodoroirigarigo	

Drei Encodereingänge:

- Inkrementalsignale A, B

Die maximale Pulsfrequenz beträgt 1 MHz, kein Referenzimpuls.

RS422-Pegel (symmetrisch) für A, B

IFD2410/2415, 12-pol Stecker		PC2415-x/OE	PC2415-1/Y
Signal	Pin	Adernfarbe	Adernfarbe
Versorgungs-GND	2	Blau	Blau
Encoder 2A+ ¹	3	Braun	Braun
Encoder 2A-	4	Weiß	Weiß
Encoder 2B+	5	Grün	Grün
Encoder 2B+	6	Gelb	Gelb
Encoder 3B+	7	Grau	Grau
Encoder 3B-	8	Rosa	Rosa

17-pol Stecker Signal Pin Adernfarbe Encoder 1B+ Grau 8 Encoder 1B-Rosa 15 Grün Encoder 3A+ 9 Encoder 3A-16 Gelb Encoder 1A-12 Rot/Blau Encoder 1A+ 17 Grau/Rosa

SC2415-x/OE

IFD2410/2415,

Abb. 18 Anschlussbelegung für drei Encodereingänge

Verwenden Sie ein geschirmtes Kabel. Kabellänge kleiner 3 m. Schließen Sie den Kabelschirm am Gehäuse an.

Anschlussbedingungen

- Die Encoder müssen symmetrische RS422-Signale liefern.
- Falls keine RS422-Ausgänge am Encoder vorhanden sein sollten, empfiehlt Micro-Epsilon den Pegelwandler SU4 (3 Kanäle TTL/HTL auf RS422) zwischen Triggersignalquelle und Controller zu schalten.

1) Werden Encoder 2 und 3 verwendet, ist sowohl keine serielle Kommunikation via RS422 als auch Synchronisierung des IFD2410/2415 möglich.

IFD2410/2415, 17-pol Stecker		SC2415-x/OE
Signal	Pin	Adernfarbe
Encoder 1B+	8	Grau
Encoder 1B-	15	Rosa
Encoder 1Ref+	9	Grün
Encoder 1Ref-	16	Gelb
Encoder 1A-	12	Rot/Blau
Encoder 1A+	17	Grau/Rosa

4.3 confocalDT 2411

4.3.1 Controller IFC2411

Der Controller IFC2411 kann auf eine ebene Unterlage gestellt oder mit einer Hutschiene TH 35 nach DIN EN 60715 z. B. in einem Schaltschrank befestigt werden. Der Mindestabstand benachbarter Controller beträgt 10 mm.

Bringen Sie den Controller so an, dass die Anschlüsse, Bedien- und Anzeigeelemente nicht verdeckt werden.

Abb. 19 Maßzeichnung IFC2411, Abmessungen in mm

4.3.2 Sensorkabel, Lichtwellenleiter

Der Sensor wird mit einem Lichtwellenleiter an den Controller angeschlossen.

- Kürzen oder verlängern Sie den Lichtwellenleiter nicht.
- Ziehen oder tragen Sie den Sensor nicht am Kabel.
- Die optische Glasfaser hat einen Durchmesser von 50 μ m.

Der Steckverbinder darf keinesfalls verschmutzt werden, da es sonst zu Partikelablagerungen im Controller und starkem Lichtverlust kommt. Eine Reinigung der Stecker ist nur mit entsprechender Fachkenntnis und Fasermikroskop zur Kontrolle möglich.

Allgemeine Regeln

Vermeiden Sie grundsätzlich

- jegliche Verschmutzung der Stecker, z. B. Staub oder Fingerabdrücke, und unnötige Steckvorgänge
- jegliche mechanische Belastung des Lichtwellenleiters (Knicken, Quetschen, Ziehen, Verdrillen, Knoten o. ä.)
- starke Krümmung des Kabels, da die Glasfaser dabei rasch geschädigt wird und dies zu einem bleibenden Schaden durch Mikrorisse führt

Unterschreiten Sie niemals den zulässigen Biegeradius.

Festverlegt: R = 30 mm oder mehr

Flexibel: R = 40 mm oder mehr

Knicken Sie nicht das Sensorkabel.

Quetschen Sie nicht das Sensorkabel, befestigen Sie es nicht mit Kabelbindern.

Sensorkabel am Controller anstecken

- Entfernen Sie den Blindstecker der grünen LWL-Buchse Sensor am Controller.
- Stecken Sie das Sensorkabel mit grünem Stecker (E2000/APC) in die LWL-Buchse und achten Sie dabei auf die richtige Ausrichtung des Sensorsteckers.
- Stecken Sie den Sensorstecker so tief ein, bis er sich verriegelt.

Sensorkabel am Controller abstecken

- Drücken Sie den Entriegelungshebel am Sensorstecker nach unten und ziehen Sie den Sensorstecker aus der Buchse heraus.
- Stecken Sie den Blindstecker wieder ein.

Verschließen Sie die optischen Ein-/Ausgänge mit Schutzkappen, wenn kein Lichtwellenleiterkabel angeschlossen ist.

Sensorkabel am Sensor anstecken

- Entfernen Sie am Sensor und am Sensorkabel die Blindstecker.
- Stecken Sie das Sensorkabel in die LWL-Buchse. Achten Sie dabei auf die richtige Ausrichtung des Sensorsteckers.
- Verschrauben Sie Sensor und Sensorkabel mit der Rändelschraube am Sensorkabel.

Beachten Sie die Orientierung von Buchse und Führungsnase.

Abb. 20 Nut der Buchse am Sensor (links) und Führungsnase eines FC-Sensorsteckers (rechts)

L

Sensorkabel am Sensor abstecken

- Öffnen Sie die Rändelschraube am Sensorkabel. Ziehen Sie das Sensorkabel vom Sensor ab.
- Verschließen Sie Sensor und Sensorkabel mit den Blindsteckern.

Ziehen Sie das Sensorkabel nicht über scharfe Kanten.

Ziehen Sie nicht am Sensorkabel.

4.3.3 Maßzeichnung Sensoren

4.3.4 Befestigung, Montageadapter

4.3.4.1 Allgemein

Die Sensoren messen im Nanometer-Bereich. Beachten Sie die maximale Verkippung zwischen Sensor und Messobjekt.

• Achten Sie bei Montage und Betrieb auf sorgsame Behandlung!

Die Sensoren sind mit einer Umfangsklemmung zu befestigen. Diese Art der Sensormontage bietet die höchste Zuverlässigkeit, da der Sensor über sein zylindrisches Gehäuse flächig geklemmt wird. Sie ist bei schwierigen Einbauumgebungen, zum Beispiel an Maschinen, Produktionsanlagen und so weiter, zwingend erforderlich.

4.3.4.2 Umfangsklemung

Montieren Sie die Sensoren IFS2404-1 (IFD2411-1), IFD2404-3 (IFD2411-3) und IFD2404-6 (IFD2411-6) mit Hilfe eines Montageadapters MA240x.

Montagering	Маß А	Маß В	Мав С
MA2400-27	ø27	ø46	19,75

Abb. 21 Montagering MA2400-27

Abb. 22 Montageblock MA240x

Montieren Sie die Sensoren IIFS2404-2 (IFD2411-2) mit Hilfe eines Montageadapters MA2404-12.

Abb. 23 Montageblock MA2404-12

4.3.5 Elektrische Anschlüsse, Anschlussbelegung

Abb. 24 Anschlussbeispiele am confocalDT IFD2411

IFC2411, 17-pol Stecker		SC2415-x/OE
Signal	Pin	Adernfarbe
Analog Ausgang	1	weiß, innenliegend
Analog GND	2	schwarz ¹
Data Tx-	3	schwarz
Data Tx+	13	violett
n.c.	5	rot
n.c.	14	blau
Encoder 1B+	8	grau
Encoder 1B-	15	rosa
Encoder 1Ref+	9	grün
Encoder 1Ref-	16	gelb
Data Rx+	10	braun
Data Rx-	11	weiß
Encoder 1A-	12	rot/blau
Encoder 1A+	17	grau/rosa
Schirm	Gehäuse	Schwarz

Das Kabel SC2415-x/OE ist als optionales Zubehör erhältlich.

17-pol Sensorstecker, Pinseite

Abb. 25 Anschlussbelegung 17-pol Controllerstecker, Pinseite

4.3.6 Massekonzept, Schirmung

Alle Ein- und Ausgänge sind galvanisch mit der Versorgungsmasse (Versorgung-GND) verbunden; die Anschlüsse von Ethernet sind potentialfrei.

Die Masseanschlüsse (Versorgungs-GND und Analog GND) jeder Anschlussgruppe sind galvanisch über Filter intern miteinander verbunden.

Die Shield-Anschlüsse jeder Anschlussgruppe sind nur mit dem Controllergehäuse verbunden. Sie dienen zum Anschluss der Kabelabschirmungen bei Einzelanschlüssen (Power, Analogausgang, Schaltausgänge, Synchronisation und Triggereingang).

- Verwenden Sie aus Gründen der Störsicherheit für den Analogausgang den zuge-
- 1 hörigen GND-Anschluss.

Verwenden Sie nur geschirmte Kabel mit einer Länge von kleiner 30 m und schließen Sie die Kabelabschirmung an Shield oder den Steckergehäusen an.

4.3.7 Versorgungsspannung (Power)

Nennwert: 24 V DC (20 ... 28 V, P < 7 W).

IFC2411 3-pol. Klemmbuchse	Versorgung
1	V ₊
2	GND
3	Schirm

Schalten Sie das Netzteil erst nach Fertigstellung der Verdrahtung ein.

- Verbinden Sie die Eingänge Pin 1 und Pin 2 am Controller mit einer 24 V-Spannungsversorgung.
- Spannungsversorgung nur für Messgeräte, nicht gleichzeitig für Antriebe oder ähnliche Impulsstörquellen verwen-
- l den. MICRO-EPSILON empfiehlt die Verwendung des optional erhältlichen Netzteils PS2020 für den Sensor.

4.3.8 RS422

Neben Industrial Ethernet unterstützt der IFC2411 auch eine serielle Kommunikation via RS422. Eine serielle Kommunikation ist möglich mit dem Kabeln SC2415-x/OE. Der RS422-zu-USB-Konverter IF2001/USB ist als optionales Zubehör erhältlich.

- Differenzsignale nach EIA-422, galvanisch mit Versorgungsspannung verbunden.
- Receiver Rx mit internem Abschlusswiderstand 120 Ohm.

Patch-Kabel Cat5E

- Verwenden Sie ein geschirmtes Kabel mit verdrillten Adern. Kabellänge kleiner 30 m.
- Verbinden Sie die Masseanschlüsse.

IFC2411 17-pol Stecker	Signal	SC2415-x/OE	IF2001/USB
3	Tx -	schwarz	Rx -
13	Tx +	violett	Rx +
10	Rx +	braun	Tx +
11	Rx -	weiß	Tx -
Gehäuse	Schirm	Kabelschirm	

4.3.9 Ethernet, EtherNet/IP

Verbindung

- mit einem Ethernet-Netzwerk (PC) oder
- mit dem Bussystem.

Verbinden Sie den IFC2411 und Netzwerk mit einem geschirmten Ethernetkabel (Cat5E, Patchkabel 2 m aus dem Lieferumfang, Gesamtkabellänge kleiner 100 m).

Die beiden LEDs MS und NS zeigen die erfolgreiche Verbindung und deren Aktivität an.

Die Konfiguration des Messgerätes kann über Objekte (EtherNet/IP), die Weboberfläche oder durch ASCII-Befehle auf Kommandoebene (z. B. Telnet) erfolgen.

4.3.10 Analogausgang

Der alternative Analogausgang (Spannung oder Strom) liegt am 17-pol. Stecker an und ist mit der Versorgungsspannung galvanisch verbunden.

IFC2411, 17-pol Stecker	SC2415-x/OE	
Signal	Pin	Adernfarbe
Analog Ausgang	1	Weiß, innenliegend
Analog GND	2	Schwarz ¹
Schirm	Gehäuse	Schwarz

Spannung: Pin *V*/*I*_{OUt} und Pin GND,

 $R_{\rm i}$ ca. 50 Ohm, $R_{\rm L} > 10$ MOhm

Slew rate (ohne $C_V, R_L \ge 1$ kOhm) typ. 0,5 V/ μ s

Slew rate (mit $C_V = 10 \text{ nF}, R_L \ge 1 \text{ kOhm}$) typ. 0,4 V/µs

Strom: Pin U/Iout und Pin GND

Verwenden Sie ein geschirmtes Kabel. Kabellänge kleiner 30 m.

Der Ausgabebereich kann alternativ auf die folgenden Werte gesetzt werden:

Spannung: 0 ... 5 V; 0 ... 10 V;

Strom: 4 ... 20 mA.

Die Messwerte können nur als Spannung oder Strom ausgegeben werden.

1) Analogausgang in geschirmten Kabelbereich

4.3.11 Multifunktionseingang

Zum Schalten eignet sich z. B. ein Schalttransistor mit offenem Kollektor (zum Beispiel in einem Optokoppler), ein Relaiskontakt oder auch ein digitales TTL- bzw. HTL-Signal.

24V-Logik (HTL): Low \leq 3 V; High \geq 8 V (max 30 V), 5V-Logik (TTL): Low \leq 0,8 V; High \geq 2 V Minimale Impulsbreite 50 μ s Interner Pull-up-Widerstand, ein offener Eingang wird als High erkannt. Maximale Schaltfrequenz 25 kHz

Es ist kein externer Widerstand zur Strombegrenzung erforderlich. Die Masse der Logikschaltung muss mit der Versorgungsmasse galvanisch verbunden sein.

4.3.12 Synchronisation (Ein-/Ausgänge)

4.3.12.1 Allgemein

- Die Pins Sync+ und Sync- an der 5-pol. Klemmbuchse: Symmetrischer Aus-/Eingang für Synchronisation von zwei oder mehreren Controllern
- Der Pin Multifunktionseingang 1 an der 5-pol. Klemmbuchse: Eingang für Synchronisation eines Controllers mit einer externen Synchronquelle z. B. Funktionsgenerator
- Der Terminierungswiderstand R_T (120 Ohm) kann via Software zu- oder abgeschaltet werden.

4.3.12.2 Interne Synchronisation

Ein Controller IFC2411 (Master) synchronisiert ein oder weitere Controller (Slaves).

	IFC2411 5-pol Klemmbuchse	Signal	Pegel
	1	Sync +	RS422
	2	Sync -	RS422
	3	Kabels	schirm
	5	GI	ND

Abb. 26 Anschlüsse und Signalpegel interne Synchronisation

Aktivieren Sie im letzten Controller (Slave n) in der Kette den Terminierungswiderstand (120 Ohm).

Sternsynchronisierung

- Verbinden Sie die Pins Sync+ und Sync- von Controller 1 (Master) sternförmig mit den Pins Sync+ und Sync- von Controller 2 (Slave) bis Controller n, um zwei oder mehrere Controller miteinander zu synchronisieren, siehe Abb. 27
- Teilleitungslänge kleiner 30 m bei Sternsynchronisierung

Kettensynchronisierung

- Verbinden Sie die Pins Sync+ und Sync- von Controller 1 (Master) mit den Pins Sync+ und Syncvon Controller 2 (Slave 1). Verbinden Sie die Pins nachfolgender Controller, um zwei oder mehrere Controller miteinander zu synchronisieren, siehe Abb. 27
- Gesamtleitungslänge 30 m bei Kettensynchronisierung
- Verwenden Sie geschirmte Kabel mit verdrillten Adern.
- Schließen Sie den Kabelschirm an Pin 3 der 5-pol. Klemmleiste an.
- **Programmieren Sie den Controller 1 auf** Master **und alle anderen Controller auf** Slave.

Abb. 27 Synchronisierung mehrerer Controller, links sternförmig, rechts verkettet

Verbinden Sie alle GND-Anschlüsse der Versorgung untereinander, falls die Controller nicht von einer gemeinsamen Spannungsversorgung gespeist werden.

- Werden die Sensoren über die EtherNet/IP-Schnittstelle betrieben, dann kann eine Synchronisation auch ohne die
- **I** Synchronisations-Leitung realisiert werden.

4.3.12.3 Externe Synchronisation Controller

Eine externe Synchronquelle synchronisiert ein oder weitere Controller (Slaves).

1 Sync/Trig 5		IFC2411 5-pol Klemmbuchse	Signal	Pegel	
	Synchronisation	4	Multifunktion	TTL	HTL
		3	Kabelschirm	Low-Pegel ≤ 0,8 V; High-Pegel > 2 V	Low-Pegel \leq 3 V; High-Pegel > 8 V (max 30 V)
		5	GND	Minimale Impulsbreite 50 μ s	Minimale Impulsbreite 50 μ s

Abb. 28 Anschlüsse und Signalpegel externe Synchronisation

Aktivieren Sie im letzten Controller (Slave n) in der Kette den Terminierungswiderstand (120 Ohm).

Sternsynchronisierung

Verbinden Sie den Pin Multifunction von Slave 1 mit der externen Synchronquelle.

Verbinden Sie GND des Controllers mit dem Masseanschluss der Synchronquelle.

Weitere Controller können im selben Schema synchronisiert werden.

- Teilleitungslänge kleiner 30 m bei Sternsynchronisierung
- Verwenden Sie geschirmte Kabel mit verdrillten Adern.
- Schließen Sie den Kabelschirm an Pin 3 der 5-pol. Klemmleiste an.
- **Programmieren Sie alle Controller auf** Slave.

Abb. 29 Synchronisierung mehrerer Controller, sternförmig

- Verbinden Sie alle GND-Anschlüsse der Versorgung untereinander, falls die Controller nicht von einer gemeinsamen Spannungsversorgung gespeist werden.
- Werden die Controller über die EtherNet/IP-Schnittstelle betrieben, dann kann eine Synchronisation auch ohne die
- 1 Synchronisations-Leitung realisiert werden.
4.3.13 Triggerung

4.3.13.1 Allgemein

Eine Triggerung der Messwertaufnahme oder -messwertausgabe ist mit

- dem Multifunktionseingang,
- den Synchroneingängen Sync+ und Sync-,
- Encoder 1 möglich.
- Verwenden Sie ein geschirmtes Kabel mit verdrillten Adern. Kabellänge kleiner 30 m.

Als Triggerquelle können Schaltkontakte, Transistoren (NPN, N-Kanal FET) oder SPS-Ausgänge dienen.

4.3.13.2 Triggerung mit Multifunktionseingang

Triggerung	IFC2411 5-pol Klemmbuchse	Signal	Pegel		
	4	Multifunction	TTL	HTL	
	3	Kabelschirm	Low-Pegel ≤ 0,8 V; High-Pegel > 2 V	Low-Pegel \leq 3 V; High-Pegel > 8 V (max 30 V)	
	5	GND	Minimale Impulsbreite 50 μ s	Minimale Impulsbreite 50 μ s	

Verbinden Sie den Pin Multifunction **mit der externen Triggerquelle**.

- Verbinden Sie GND des Controllers mit dem Masseanschluss der externen Triggerquelle.
- Verbinden Sie die Schirmung des Triggerkabels mit Pin 3.

Der Anschluss Multifunction des Controllers ist auf die Funktion Triggereingang zu programmieren.

4.3.13.3 Triggerung mit Synchroneingang

Verbinden Sie Pin 1 (Sync +) und Pin 2 (Sync -) mit der externen Triggerquelle.

Verbinden Sie die Schirmung des Triggerkabels mit Pin 3.

Der Anschluss Multifunction des Controllers ist auf die Funktion Triggereingang zu programmieren.

Verbinden Sie die Pins Sync+ und Sync- mit der externen Triggerquelle.

Die Sync-Anschlüsse des Sensors sind auf die Funktion Triggereingang zu programmieren.

Die Triggerquelle (Master) muss ein symmetrisches Ausgangssignal gemäß der Norm RS422 liefern. Für unsymmetrische Triggerquellen empfiehlt Micro-Epsilon den Pegelwandler SU4 (3 Kanäle TTL/HTL auf RS422) zwischen Triggersignalquelle und Sensor zu schalten.

4.3.13.4 Triggerung mit Eingang Encoder 1

Ein angeschlossener Encoder am Eingang Encoder 1 kann zur Triggerung verwendet werden.

IFC2411, 17-pol Stecker			SC2415-x/OE	
Signal	Pin	Pegel	Adernfarbe	
Encoder 1B+	8		Grau	
Encoder 1B-	15	BS400 (EIA400)	Rosa	
Encoder 1A-	12	N3422 (EIA422)	Rot/Blau	
Encoder 1A+	17		Grau/Rosa	

Die Encoder-Anschlüsse des Controllers sind auf die Funktion Triggereingang zu programmieren.

4.3.14 Encodereingang

Das Messsystem unterstützt einen Encoder.

Encodereingänge:

- Inkrementalsignale A, B
- Referenzimpuls

Die maximale Pulsfrequenz beträgt 1 MHz.

RS422-Pegel (symmetrisch) für A, B, Ref

Die Encoderversorgung wird nicht zur Verfügung gestellt.

Sensor, 17-pol Ste	SC2415-x/OE	
Signal	Pin	Adernfarbe
Encoder 1B+	8	Grau
Encoder 1B-	15	Rosa
Encoder 1Ref+	9	Grün
Encoder 1Ref-	16	Gelb
Encoder 1A-	12	Rot/Blau
Encoder 1A+	17	Grau/Rosa

Abb. 30 Anschlussbelegung für Encodereingang

Verwenden Sie ein geschirmtes Kabel. Kabellänge kleiner 3 m. Schließen Sie den Kabelschirm am Gehäuse an.

Anschlussbedingungen

- Die Encoder müssen Signale mit TTL-Pegel liefern. .

4.3.15 Handhabung der steckbaren Schraubklemmen

Der Controller hat zwei steckbare Schraubklemmen für Versorgung, Synchronisation und Triggerung. Diese liegen als Zubehör bei.

Entfernen Sie die Isolierung der Anschlussdrähte (0,14 ... 1,5 mm²) auf einer Länge von 7 mm.

- Schließen Sie die Anschlussdrähte an.
- Die Schraubklemmen lassen sich mit zwei unverlierbaren Schrauben fixieren.

4.3.16 Dunkelkorrektur IFD2411

Nach einem Wechsel von Sensor oder Sensorkabel muss eine Dunkelkorrektur durchgeführt werden. Details dazu erfahren Sie im Abschnitt Inbetriebnahme, siehe Kap. 5.

4.4 LEDs

LED Intensity / Farbe / Zustand		arbe / Zustand	Bedeutung
Ì	Rot	Blinken	Dunkelsignalerfassung läuft
*	Rot	Ein	Signal in Sättigung
*	Gelb	Ein	Signal zu gering
*	Grün	Ein	Signal in Ordnung
LED	Range / Far	be / Zustand	Bedeutung
	Rot	Blinken	Dunkelsignalerfassung läuft
*	Rot	Ein	Kein Messobjekt vorhanden, außerhalb des Messbereichs
☀	Gelb	Ein	Messobjekt in der Nähe von Messbereichsmitte
☀	Grün	Ein	Messobjekt im Messbereich
LED I	NS / Farbe ,	Zustand	Bedeutung
0		Aus	Keine Spannung: Wenn das Gerät nicht mit Spannung versorgt wird, ist die Modulstatus-Anzeige konstant aus.
*	Grün	Ein	Gerät funktionsfähig: Bei einem ordnungsgemäßen Geräte- betrieb leuchtet die Modulstatus-Anzeige konstant grün.
X	Grün	Blinken	Standby: Wenn das Gerät noch nicht konfiguriert wurde, blinkt die Modulstatus-Anzeige grün.
X	Rot	Blinken	Major Recoverable Fault: Wenn das Gerät einen Major Re- coverable Fault erkannt hat, blinkt die Modulstatus-Anzeige rot. HINWEIS: Eine ungültige oder inkohärente Konfiguration gilt als geringfügiger Fehler.
*	Rot	Ein	Major Unrecoverable Fault: Wenn das Gerät einen Major Unrecoverable Fault erkannt hat, leuchtet die Modulstatus- Anzeige konstant rot.
Ť	Rot / Grün	Blinken	Selbsttest: Während das Gerät seinen Power Up-Test durch- führt, blinkt die Modulstatus-Anzeige grün/rot.
LED I	NS / Farbe /	Zustand	Bedeutung
0		Aus	Keine Spannung, keine IP-Adresse: Wenn das Gerät keine IP-Adresse hat (oder ausgeschaltet ist), ist die Netzwerksta- tus-Anzeige konstant aus.
X	Grün	Blinken	No connections: Eine IP-Adresse wurde konfiguriert, aber keine CIP Connection wurde aufgebaut und keine Exclusive Owner Connection hatte ein Timeout.
*	Grün	Ein	Connected: Eine IP-Adresse wurde konfiguriert. Mindestens eine CIP Connection wurde aufgebaut und keine Exclusive Owner Connection hatte ein Timeout.
X	Rot	Blinken	Connection timeout: IP-Adresse wurde konfiguriert und eine Exclusive Owner Connection, für die das Gerät das Ziel ist, hatte ein Timeout. Die Netzwerkstatus-Anzeige wird zurückkehren auf dauerhaft Grün, wenn alle Eclusive Owner Connections mit Timeout wieder aufgebaut wurden.
*	Rot	Ein	Doppelt vergebene IP-Adresse: Wenn das Gerät erkannt hat, dass seine IP-Adresse bereits verwendet wird, leuchtet die Netzwerkstatus-Anzeige konstant rot.
Ý	Rot / Grün	Blinken	Selbsttest: Während das Gerät seinen Power Up-Test durch- führt, blinkt die Netzwerkstatus-Anzeige grün/rot.

Intensity
 range
 RUN/SF/MS
 ERR/BF/NS

Abb. 31 Bedeutung der LEDs am Messsystem

4.5 Taste Correct und Multifunction

Die Tasten Correct am IFD241x bzw. Multifunction am IFC2411 sind mehrfach belegt. Ab Werk sind die Tasten mit der Funktion Dunkelkorrektur belegt.

Funktion		Dunkelkorrektur Werkseinstellung		Startet die Dunkelkorrektur
				Setzt die Geräte- und die Messeinstellungen auf die Werkseinstellungen zurück.
	Dun	kelkorrektur	Werks- einstell	lung
0	2 sec	10	sec	Zeit

Abb. 32 Betätigungsdauer Taste Correct

Ab Werk ist die Taste mit keiner Tastensperre belegt. Um eine Fehlbedienung zu vermeiden, können Sie die Taste optional deaktivieren bzw. sperren.

Setzen auf Werkseinstellung: Drücken Sie die Taste länger als 10 s.

5. Inbetriebnahme

5.1 Kommunikationsmöglichkeiten

Ca. 3 s nach dem Anlegen der Versorgungsspannung ist das Messsystem betriebsbereit.

Lassen Sie das Messsystem für genaue Messungen etwa 50 min warmlaufen.

Das Messsystem startet mit der zuletzt gespeicherten Betriebsart. Standard ist EtherNet/IP.

 Das Messsystem wird im DHCP-Betrieb ausgeliefert. Es ist ein DHCP-Server erforderlich, um dem Messsystem eine IP-Adresse zuzuweisen. Anschließend ist auch eine Vergabe einer statischen IP-Adresse möglich.

Im Messsystem ist ein Webserver implementiert; das Webinterface stellt u. a. die aktuellen Einstellungen des Messsystems dar. Die Bedienung ist nur so lange möglich, wie eine Ethernet-Verbindung zum Messsystem besteht.

Standard

Alternative Kommunikation

EtherNet/IP-Betrieb

Binden Sie die Gerätebeschreibungsdatei (EDS) in Ihre SPS-Entwicklungsumgebung ein.

Die Dateien finden Sie online unter

- https://www.micro-epsilon.de/service/download/ software-und-treiber/.
- Weisen Sie dem Sensor eine IP-Adresse zu.

Bei EtherNet/IP kann das Webinterface ohne Wechsel in den Ethernet-Setup-Mode erreicht werden.

Starten Sie Ihren Webbrowser und tippen Sie die IP-Adresse des Sensors in die Adresszeile.

Neben der Webseite können Sie über Ethernet auch eine neue Firmware über das Firmware-Update-Tool installieren.

Weitere Informationen für den EtherNet/IP-Betrieb finden Sie hier, siehe Kap. 8.

RS422-Kommunikation

- Parametrisierung über Webinterface,
- Parametrisierung auf Kommandoebene z. B. mit Telnet,
- Parallele Ausgabe von Messdaten über EtherNet/IP und RS422 ist möglich.
- Verbinden Sie das Messsystem z. B. über einen RS422-Konverter IF2001/USB von Micro-Epsilon via USB mit einem PC.
- Starten Sie das Programm sensorTOOL.

Download unter https://www.micro-epsilon.de/down-load/software/sensorTOOL.exe.

Klicken Sie auf die Schaltfläche Sensor.

Das Programm sucht nach angeschlossenen Messsystemen.

Wählen Sie das gewünschte Messsystem aus. Klicken Sie auf die Schaltfläche Öffne Website.

Speichern Sie Ihre Einstellungen, damit sie remanent und schnittstellenübergreifend im Messsystem verbleiben, siehe Kap. 5.9.

5.2 Zugriff über Webinterface

Starten Sie das Webinterface des Messsystems, siehe Kap. 5.1.

Im Webbrowser erscheinen nun interaktive Webseiten zur Konfiguration des Messsystems. Das Messsystems ist aktiv und liefert Messwerte. Eine Echtzeitmessung ist mit dem Webinterface nicht gewährleistet. Die laufende Messung kann mit den Funktionsschaltflächen im Diagrammtyp gesteuert werden.

Abb. 33 Einstiegsseite nach Aufruf des Webinterfaces im Ethernetbetrieb

Zur Konfiguration kann zwischen dem Videosignal und einer Darstellung der Messwerte über die Zeit umgeschaltet werden. Das Aussehen der Webseiten kann sich abhängig von den Funktionen ändern. Dynamische Hilfetexte mit Auszügen aus der Betriebsanleitung unterstützen Sie bei der Konfiguration des Messsystems.

- Abhängig von der gewählten Messrate und des genutzten PC's kann es zu einer dynamischen Messwertreduktion
- 1 in der Darstellung kommen. D. h. nicht alle Messwerte werden an das Webinterface zur Darstellung und Speicherung übertragen.

Die horizontale Navigation enthält folgende Funktionen:

- Home. Das Webinterface startet automatisch in dieser Ansicht mit Messchart, Messkonfiguration und Signalqualität.
- Einstellungen. Konfiguration Parameter, u. a. Triggerung, Messrate und Nullsetzen/Mastern.
- Messwertanzeige. Messchart oder Einblendung des Videosignals.
- Info. Enthält Informationen zum Sensor, u. a. Messbereich, Seriennummer und Softwarestand.
- Sprachauswahl Webinterface

Die vertikale Navigation ist kontextbezogen zu der Auswahl in der horizontalen Navigation und enthält für das Menü Home folgende Funktionen:

- Die Funktion Einstellungen suchen ermöglicht einen zeitsparenden Zugriff auf Funktionen und Parameter.
- Messkonfiguration. Ermöglicht eine Auswahl an vordefinierten Messeinstellungen.
- Signalqualität. Per Mausklick kann zwischen drei vorgegebenen Grundeinstellungen für die Messrate und die Mittelung gewechselt werden.

5.3 Messobjekt platzieren

Platzieren Sie das Messobjekt möglichst in der Mitte des Messbereichs.

) intensity) range 	LED Range			
	Rot	Kein Messobjekt vorhanden oder außerhalb des Messbereichs		
	Gelb	Messobjekt in der Nähe von Messbereichsmitte		
	Grün	Messobjekt im Messbereich		

Die LED Range an der Frontseite des Messsystems zeigt die Position des Messobjektes zum Sensor an.

5.4 Sensor auswählen

Die Funktion ist gültig für das Messsystem IFD2411.

Controller und Sensor(en) sind ab Werk aufeinander abgestimmt.

- Gehen Sie in das Menü Einstellungen > Sensor.
- Wählen Sie den benötigten Sensor aus der Liste aus.

G Home			
(
Sensor			
Gewählter Sensor:			
REF-IFS2406-12 00002884 12.000 mm			
IFS2401-10 7111077 10.000 mm			
IFS2406-10 7111180 10.000 mm			

Im Controller können die Kalibrierdaten von bis zu 20 verschiedenen Sensoren hinterlegt werden. Die Kalibrierung ist nur durch Micro-Epsilon möglich.

5.5 Presets, Setups, Auswahl Messkonfiguration

Definition

- Preset: Hersteller-spezifisches Programm, das Einstellungen für häufige Messaufgaben enthält; sie können nicht überschrieben werden
- Setup: Anwender-spezifisches Programm, das relevante Einstellungen für eine Messaufgabe enthält
- Initiales Setup beim Booten (Start Messsystem): aus den Setups kann ein Favorit gewählt werden, das beim Start automatisch aktiviert wird. Ist kein Favorit aus den Setups bestimmt, aktiviert das Messsystem das Preset Standard beim Start.

Presets erlauben einen schnellen Start in die individuelle Messaufgabe. Im Preset sind, passend zur Messobjekt-Oberfläche, grundlegende Merkmale wie z. B. die Peak- und Materialauswahl oder die Verrechnungsfunktionen bereits eingestellt.

Standard matt	Abstandsmessung z.B. gegen Keramik, nicht transparente Kunststoffe. Höchster Peak, Mittelung, Abstandsberechnung.	Einseitige Dickenmessung	Einseitige Dickenmessung z. B. gegen Glas, Material BK7. Erster und zweiter Peak, Mittelung, Dickenbe- rechnung.
Standard glänzend	Abstandsmessung z.B. gegen Metall, polierte Oberflächen. Höchster Peak, Median über 5 Werte, Abstandsberechnung.	Multilayer Luftspalt	Einseitige Dickenmessung ¹ gegen Glas, 1. Schicht BK7, 2. Schicht Vakuum, erster und zweiter Peak, 3 Messwerte, Median über 5 Werte, Gleitende Mittelung über 16 Werte, Dickenberechnung.
Multisurface	Abstandsmessung z. B. gegen PCB, Hybrid-Materialien. Höchs- ter Peak, Median über 9 Werte, Abstandsberechnung.	Multilayer laminiertes Glas	Schichtdickenmessung ¹ gegen Verbundglas z.B. Windschutzschei- be, 1. Schicht BK7, 2. Schicht PC, 3. Schicht BK7, erster und zweiter Peak 4 Messwerte, Dickenberechnung, Gleitende Mittelung über 16 Werte.

1) Nur mit IFD2415 möglich.

5.6 Videosignal

🔼 Gehen Sie in das Menü Messwertanzeige. Blenden Sie die Video-Signaldarstellung mit Video ein.

Das Diagramm im rechten großen Grafikfenster stellt das Videosignal der Empfängerzeile in verschiedenen Nachbearbeitungszuständen dar.

Das Videosignal im Grafikfenster zeigt die Spektralverteilung über den Pixeln der Empfängerzeile an. Links 0 % (Abstand klein) und rechts 100 % (Abstand groß). Der zugehörige Messwert ist durch eine senkrechte Linie (Peakmarkierung) markiert.

Das Diagramm startet automatisch bei einem Aufruf der Webseite.

Abb. 34 Webseite Videosignal

1

Die Webseite Videosignal beinhaltet folgende Funktionen:

- Die LED visualisiert den Zustand der Messwertübertragung.
 - grün: Messwertübertragung läuft.
 - gelb: wartet im Triggerzustand auf Daten
 - grau: Messwertübertragung angehalten

Die Steuerung der Datenabfrage erfolgt mit den Schaltflächen Play/Pause/Stop/Speichern der übertragenen Messwerte. Stop hält das Diagramm an; eine Datenauswahl und die Zoomfunktion sind weiterhin möglich. Pause unterbricht die Aufzeichnung. Speichern öffnet den Windows-Auswahldialog für den Dateinamen und den Speicherort, um die ausgewählten Video-Signale in eine CSV-Datei zu speichern. Diese enthält alle Pixel, deren (ausgewählte) Intensität) in % und weitere Parameter.

► Klicken Sie auf die Schaltfläche ► (Start), um die Anzeige der Messergebnisse zu starten.

- Im linken Fenster können die darzustellenden Videokurven während oder nach der Messung hinzu- oder abgeschaltet werden. Nicht aktive Kurven sind grau unterlegt und können durch einen Klick auf den Haken hinzugefügt werden. Die Änderungen werden wirksam, wenn Sie die Einstellungen speichern. Mit den Augensymbolen
 können Sie die einzelnen Signale ein- oder ausblenden. Die Berechnung läuft weiter im Hintergrund.
 - 0xRAW: Rohsignal (unkorrigiertes CCD-Signal)
 - 0xDARK: Dunkelkorrigiertes Signal (Rohsignal minus Dunkelwertetabelle)
 - 0xLIGHT: Hellkorrigiertes Signal (dunkelkorrigiertes Signal korrigiert mit Hellwertetabelle)
 - 0xDARK_TABLE: Dunkelwertetabelle (nach Dunkelabgleich erzeugte Tabelle)
 - 0xLIGHT_TABLE: Hellwertetabelle (nach Hellabgleich erzeugte Tabelle)
- 3 Für die Skalierung der Intensitätsachse (Y-Achse) der Grafik ist Auto (= Autoskalierung) oder Manual (= manuelle Einstellung) möglich.
- 4 Alle Änderungen werden erst wirksam mit Klick auf die Schaltfläche Einstellungen speichern.
- 5 Über der Grafik werden die aktuellen Werte der Belichtungszeit und die gewählte Messrate zusätzlich angezeigt.

- 6 Mouseover-Funktion. Beim Bewegen der Maus über die Grafik werden Kurvenpunkte oder die Peakmarkierung mit einem Kreissymbol markiert und die zugehörige Intensität angezeigt. Über dem Grafikfeld erscheint die dazugehörende x-Position in %.
- 7 Der Auswertebereich kann eingeschränkt werden, wenn z. B. Fremdlicht bestimmter Wellenlänge (blau, rot, IR) Störungen im Videosignal verursacht. Der Wert für den "Bereichsanfang" muss kleiner sein als der Wert für das "Bereichsende". Wertebereich von 0 ... 100 %.
- 8 Der linearisierte Bereich liegt im Diagramm zwischen den grauen Schattierungen und ist nicht veränderbar. Nur Peaks, deren Mitten innerhalb dieses Bereiches liegen, können als Messwert berechnet werden. Der maskierte Bereich kann bei Bedarf eingeschränkt werden und wird dann rechts und links durch eine zusätzliche hellblaue Schattierung begrenzt. Die im resultierenden Bereich verbleibenden Peaks werden für die Auswertung verwendet.
- 9 Die Erkennungsschwelle, bezogen auf das dunkelkorrigierte Signal, ist eine horizontale Gerade entsprechend dem vorgewählten Wert. Sie sollte gerade so hoch liegen, dass möglichst kein ungewollter Peak im Videosignal in die Auswertung einbezogen wird. Für ein gutes Signal- zu Rauschverhältnis ist eine möglichst niedrige Schwelle anzustreben. Die Erkennungsschwelle sollte möglichst nicht verändert werden.
- Skalierung der X-Achse: Das oben dargestellte Diagramm kann mit den beiden Slidern rechts und links im unteren Gesamtsignal vergrößert (gezoomt) werden. Mit der Maus in der Mitte des Zoomfensters (Pfeilkreuz) kann dieses auch seitlich verschoben werden.

Abb. 35 Zoomen mit Slider: einseitig bzw. Bereichsverschiebung mit Pfeilkreuz

11 Die beiden Schaltflächen ermöglichen den Wechsel zwischen Videosignal- und Messwertdarstellung.

5.7 Signalqualität

Ein gutes Messergebnis lässt sich bei ausreichender Intensität des Videosignals erzielen. Eine Reduzierung der Messrate lässt eine längere Belichtung der CCD-Zeile zu und führt so zu hoher Messgüte.

Im Bereich Signalqualität kann per Mausklick zwischen drei vorgegebenen Grundeinstellungen (Statisch, Ausgewogen, Dynamisch) gewechselt werden. Dabei ist die Reaktion im Diagramm und der Systemkonfiguration sofort sichtbar.

Gehen Sie in das Menü Home > Signalqualität und passen Sie die Messdynamik den Erfordernissen an. Kontrollieren Sie das Ergebnis im Videosignal.

Mocerato

Signalqualität	
	Statis
μm kHz	Ausgew
Statisch Ausgewogen Dynamisch	Dynami

	wessiale	witterung
tisch	200 Hz	Gleitend, 128 Werte
gewogen	1 kHz	Gleitend, 16 Werte
amisch	5 kHz	Gleitend, 4 Werte

Mittaluna¹

Startet der Sensor mit einer benutzerdefinierten Konfiguration (Setup), siehe Kap. 5.5, ist ein Ändern der Signalqualität nicht möglich.

1) Gilt für die Presets Standard und Einseitige Dickenmessung.

5.8 Abstandsmessung mit Anzeige auf der Webseite

Richten Sie den Sensor senkrecht auf das zu messende Objekt aus.

Rücken Sie den Sensor (oder das Messobjekt) von fern anschließend so lange immer weiter heran, bis der dem verwendeten Sensor entsprechende Messbereichsanfang etwa erreicht ist.

Sobald sich das Objekt im Messfeld des Sensors befindet, wird dies durch die LED Range (grün oder gelb) angezeigt. Alternativ dazu ist das Videosignal anzusehen.

LED	Zustand	Beschreibung
Intensity	Rot	Signal in Sättigung
	Gelb	Signal zu gering
	Grün	Signal in Ordnung
Range	Rot	Kein Messobjekt oder außerhalb des Messbereichs
	Gelb	Messobjekt in Mitte Messbereich
	Grün	Messobjekt im Messbereich

Abb. 36 Bedeutung der LEDs bei der Abstandsmessung

Nach dem Öffnen von Messwertanzeige > Diagrammtyp Mess wird die nachfolgende Webseite geöffnet. Das Diagramm startet automatisch bei Aufruf der Webseite. Das Diagramm im rechten großen Grafikfenster zeigt das Messwert-Zeit-Diagramm.

Abb. 37 Webseite Messung (Abstandsmessung)

- 1 Die LED visualisiert den Zustand der Messwertübertragung.
 - grün: Messwertübertragung läuft.
 - gelb: wartet im Triggerzustand auf Daten
 - grau: Messwertübertragung angehalten

Die Steuerung der Datenabfrage erfolgt mit den Schaltflächen Play/Pause/Stop/Speichern der übertragenen Messwerte. Stop hält das Diagramm an; eine Datenauswahl und die Zoomfunktion sind weiterhin möglich. Pause unterbricht die Aufzeichnung. Speichern öffnet einen Windows Auswahldialog für Dateiname und Speicherort, um die letzten 10.000 Werte in eine CSV-Datei (Trennung mit Semikolon) zu speichern.

Klicken Sie auf die Schaltfläche 🕨 (Start), um die Anzeige der Messergebnisse zu starten.

- Im linken Fenster können die darzustellenden Signale von Kanal 1/2 während oder nach der Messung hinzu- oder abgeschaltet werden. Nicht aktive Kurven sind grau unterlegt und können durch einen Klick auf den Haken hinzugefügt werden. Die Änderungen werden wirksam, wenn Sie die Einstellungen speichern. Mit den Augensymbolen () können Sie die einzelnen Signale ein- oder ausblenden. Die Berechnung läuft weiter im Hintergrund.
 - 0xSHUTTER: Belichtungszeit
 - 0xINTENSITY: Signalqualität des zu Grunde liegenden Peaks im Videosignal
 - 0xDIST: Zeitlicher Verlauf des Wegsignals
- 3 Für die Skalierung der Messwertachse (Y-Achse) der Grafik ist Auto (= Autoskalierung) oder Manual (= manuelle Einstellung) möglich.
- 4 Alle Änderungen werden erst wirksam mit Klick auf die Schaltfläche Einstellungen speichern.
- 5 In den Textboxen über der Grafik werden die aktuellen Werte für Abstand, Belichtungszeit, aktuelle Messrate und Zeitstempel angezeigt. Fehler werden ebenfalls angezeigt.
- 6 Mouseover-Funktion. Im gestoppten Zustand werden beim Bewegen der Maus über die Grafik Kurvenpunkte mit einem Kreissymbol markiert und die zugehörigen Werte in den Textboxen über der Grafik angezeigt. Die Intensitätsbalken werden ebenfalls aktualisiert.
- 7 Die Peakintensität wird als Balkendiagramm angezeigt.
- 8 Skalierung der x-Achse: Bei laufender Messung kann mit dem linken Slider das Gesamtsignal vergrößert (gezoomt) werden. Der Zeitbereich lässt sich auch mit einem Eingabefeld unter der Zeitachse definieren. Ist das Diagramm gestoppt, kann auch der rechte Slider verwendet werden. Das Zoomfenster kann auch mit der Maus in der Mitte des Zoomfensters (Pfeilkreuz) verschoben werden.

5.9 Einstellungen speichern/laden

Dieses Menü ermöglicht Ihnen momentane Geräteeinstellungen im Controller zu speichern oder gespeicherte Einstellungen zu aktivieren. Sie können im Controller acht verschiedene Parametersätze dauerhaft speichern.

Nicht gespeicherte Einstellungen gehen beim Ausschalten verloren. Speichern Sie Ihre Einstellungen in Setups.

Q Einstellungen suchen	🕢 Home 📀	Einstellungen 🐼 Messwertanz	eige i	Info	Einstellungen s
Sensor	🔗 Laden & Speichern	(C) Messeinstellungen	\bigotimes	Geräteeinstellunge	en 😢
S Eingänge	Messeinstellungen	F1p15		🕜 Laden	- Speichern
Messwertaufnahme	Setup erstellen	🔊 🕜 Laden 🔒 Spei	ichern		
Signalverarbeitung	Gespeicherte Messeinstellungen	G Favorit 🕃 Lö	schen	Diese Einstellunge Im-/Exportieren	n
Nachbearbeitung	E state	Diese Einstellungen Im-/E	Export	Importieren einer Setup	-Datei
O Ausgänge	B	Importieren einer Setup-Datei		Durchsuchen Keine	Datei ausgewählt.
Systemeinstellungen	Acryl4_2	Durchsuchen Keine Datei auss	gewählt.	Datensatz exportieren	ren
Einheit im Webinterface mm	Geräteeinstellungen	Datensatz exportieren		Exportie	eren
Tastensperre Inaktiv	Setup verwalten	Exportieren		i Info	
Laden & Speichern Acryl4_2					

Abb. 38 Verwalten von Anwenderprogrammen

💌 Wechseln Sie in das Menü Einstellungen > Laden & Speichern.

Setu	Setups im Controller verwalten, Möglichkeiten und Ablauf					
Einstellungen speichern		Bestehendes Setup aktivieren	Änderung im aktiven Setup speichern	Setup nach dem Booten bestimmen		
Menü Setup erstellen, Bereich A		Menü Laden & Speichern	Menüleiste	Menü Laden & Speichern		
	Geben Sie im Feld	Klicken Sie mit der linken Maustaste auf das gewünschte Setup,	Klicken Sie auf die Schaltfläche	Klicken Sie mit der linken Maustaste auf das gewünschte Setup,		
	an, z. B. F1p15 und be-	Bereich B.	Einstellungen speichern	Bereich B.		
	mit der Schaltfläche	Es öffnet sich der Dialog Messeinstellungen.	Einstellungen speichern	Es öffnet sich der Dialog Messeinstellungen.		
		Klicken Sie die Schaltflä- che Laden.		Klicken Sie die Schaltflä- che Favorit.		

Die momentanen Einstellungen sind im Controller auch nach dem Ausschalten / Einschalten wieder verfügbar.

Für ein schnelles Zwischenspeichern auf den zuletzt gespeicherten Parametersatz können Sie auch die Schaltfläche Einstellungen speichern, rechts oben, in jeder Einstellungsseite benutzen.

Beim Einschalten wird der zuletzt im Controller gespeicherte Parametersatz geladen.

Setups mit PC/Notebook austauschen, Möglichkeiten				
Setup auf PC speichern	Setup von PC laden			
Menü Laden & Speichern	Menü Laden & Speichern			
Klicken Sie mit der linken Maustaste auf das gewünschte Setup, Bereich B.	Klicken Sie mit der linken Maustaste auf Setup erstel- len.			
Es öffnet sich der Dialog Messeinstel-	Es öffnet sich der Dialog Messeinstellungen.			
lungen.	Klicken Sie die Schaltfläche Durchsuchen.			
Klicken Sie die Schaltfläche Expor-	Es öffnet sich ein Windows-Dialog zur Dateiauswahl.			
	Wählen Sie die gewünschte Datei aus und klicken Sie Schaltflä- che Öffnen.			
	Klicken Sie auf die Schaltfläche Importieren.			

5.10 Dunkelkorrektur

Vor der Durchführung einer Dunkelkorrektur benötigt das Messsystem eine Warmlaufzeit von ca. 30 min.

Eine Dunkelkorrektur ist erforderlich nach

- Sensorwechsel
- Wechsel Sensorkabel
- längerer Betriebszeit, Verschmutzung des Sensors

Die Dunkelkorrektur ist abhängig vom Sensor und wird für jedes Messsystem separat im Controller gespeichert. Vor der Korrektur ist deshalb der gewünschte Sensor anzuschließen. Für das IFD2411 ist der Sensor im Menü Einstellungen > Sensor auszuwählen.

Arbeitsschritte:

- Entfernen Sie das Messobjekt aus dem Messbereich oder decken Sie die Sensorstirnfläche mit einem Stück dunklem Papier ab.
- Bei der Dunkelkorrektur darf sich unter keinen Umständen ein Objekt innerhalb des Messbereichs befinden, oder Fremdlicht in den Sensor gelangen.

Korrektur mit Tastenfunktion	Korrektur via Software/Webinterface	
IFD2410/2415	IFD2411	
Drücken Sie die Taste Correct am IFD2410/2415 für ca. 4 s ¹ , um die Korrektur zu starten.	Drücken Sie die Taste Multi- function am IFC2411 für ca. 4 s, um die Korrektur zu star- ten.	 Wechseln Sie in das Menü Ein- stellungen > Sensor > Dunkelkorrektur. Klicken Sie auf die Schalffläche Start, um die Korrektur zu star- ten.

Die LED's Intensity und Range beginnen zu blinken. Nun zeichnet der Sensor ca. 50 s lang das aktuelle Dunkelsignal auf.

Das dunkelkorrigierte Videosignal nach dem Abgleich ist gekennzeichnet durch einen fast glatten Signalverlauf unmittelbar an der X-Achse.

IFD2410/2415	Auswertung Dunkelsignal	IFD2411
Entfernen Sie die Papierab- deckung vom Sensor. Der Sensor kann wieder normal verwendet werden.	25.000 25.000 0 25 50 75 Bereich [%]	Entfernen Sie die Papierab- deckung vom Sensor. Der Sensor kann wieder normal verwendet werden.
	Durikeisignai in Ordnung	
Reinigen Sie vorsichtig die Glasfläche am Sensor.	25.000 0 0 25 Bereich [%]	Reinigen Sie vorsichtig die Stirnseite des E2000-Ste- ckers des Sensorkabels und die Buchse am Controller, siehe Kap. A 4.
Wiederholen Sie die Dunkel korrektur.	Dunkelsignal zu hoch	Wiederholen Sie die Dunkel- korrektur.

Mit jeder neuen Dunkelkorrektur wird der aktuelle Helligkeitswert, als Quotient aus der Summe aller Intensitäten und aktueller Belichtungszeit, bestimmt. Wenn eine starke Veränderung zum vorher gespeicherten Wert erkannt wurde, kann das als Grad der Verschmutzung gedeutet werden, und es wird eine Warnung ausgegeben.

Sie können diese Meldung auch ignorieren. Bei zeitkritischen Messungen jedoch sollten Sie sich die aktuelle Belichtungsszeit merken.

1) Bei mehr als 10 Sekunden Betätigungsdauer wird die Werkseinstellung geladen. confocalDT IFD2410/2411/2415 / EtherNET/IP

Verwenden Sie für eine Reinigung ausschließlich reinen Alkohol und frisches Linsenreinigungspapier.

Führt eine Reinigung der Komponenten nicht zum Erfolg, kann auch das Sensorkabel beschädigt oder der im Controller liegende Faserstecker verschmutzt worden sein.

Wechseln Sie das Sensorkabel oder senden Sie das ganze System zur Überprüfung ein.

Mit einem ASCII-Befehl können Sie bei Bedarf die Warnschwelle bei Verschmutzung einstellen

- zulässige Abweichung in %,
- die Werkseinstellung beträgt 50 %.

Die Warnschwelle wird setupspezifisch gespeichert.

6. Sensorparameter einstellen, Webinterface

6.1 Eingänge

6.1.1 Synchronisation

Wechseln Sie im Reiter Einstellungen in das Menü Eingänge.

Synchronisation	Master / Slave /	Sollen mehrere Messsysteme taktgleich am gleichen Messobjekt mes-
	Multifunktionseingang 1 /	sen, können die Controller untereinander synchronisiert werden. Der
	Multifunktionseingang 2	Synchronisationsausgang des ersten Controllers (Master) steuert die an
		den Synchronisationseingängen verbundenen Controller (Slaves), siehe
	inaktiv	Kap. 4.2.11, siehe Kap. 4.3.12.

Wird das Messsystem über eine SPS betrieben, dann kann eine Synchronisation auch ohne eine Synchronisationsleitung realisiert werden.

6.1.2 Encodereingänge

6.1.2.1 Übersicht, Menü

Das IFD2410/2415 unterstützt bis zu drei Encoder, siehe Kap. 4.2.13.

Das IFD2411 unterstützt einen Encoder, siehe Kap. 4.3.14.

Maximal drei Encoderwerte können exakt den Messdaten zugeordnet, ausgegeben und auch als Triggerbedingung verwendet werden. Diese exakte Zuordnung zu den Messwerten wird dadurch gewährleistet, dass genau die Encoderwerte ausgegeben werden, die in der Hälfte der Belichtungszeit des Messwertes anlagen (die Belichtungszeit kann auf Grund der Regelung variieren). Spur A und B erlauben eine Richtungserkennung. Jeder der Encoder kann getrennt eingestellt werden.

Anzahl Encoder	er 1/2/3				
Encoder 1 / 2	Interpolation	einfache / zweifache / vierfache Auflösung			
	Maximaler Wert	Wert			
	Wirkung auf Referenzspur	ohne Wirkung / einmaliges Setzen bei Marke / Setzen bei allen Marken			
	Setzen auf Wert	Wert			
	Encoderwert per Software setzen				
	Rücksetzen der Erkennung der ersten Referenzmarke				
Encoder 3	Interpolation	einfache / zweifache / vierfache Auflösung			
	Maximaler Wert	Wert			
	Wirkung auf Referenzspur	ohne Wirkung			
	Setzen auf Wert	Wert			
	Encoderwert per Software setzen				
	Rücksetzen der Erkennung der ersten Referenzmarke				

6.1.2.2 Anzahl Encoder

Die Anzahl der Encoder legt fest, wie viele der Encoder genutzt werden. Bei 2 Encodern können die Datenausgabe über RS422 und die Synchronisation nicht verwendet werden. Bei 3 Encodern können zusätzlich die Referenzspuren von Encoder 1 und Encoder 2 nicht verwendet werden.

6.1.2.3 Interpolation

Eine Interpolation erhöht die Auflösung eines Encoders. Der Zählerstand wird mit jeder interpolierten Impulsflanke erhöht oder erniedrigt.

Abb. 39 Impulsbild Encodersignale

6.1.2.4 Maximaler Wert

Überschreitet der Encoder diesen maximalen Wert, beginnt der Encoderzähler wieder bei Null zu zählen. Dies kann z. B. die Impulszahl eines Drehgebers ohne Nullimpuls (Referenzspur) sein. Der Zählerstand vor einem Überlauf beträgt max. 4.294.967.295 (2³2-1).

6.1.2.5 Wirkung der Referenzspur

Ohne Wirkung. Der Encoderzähler zählt immer weiter; das Rücksetzen erfolgt bei Einschalten des Controllers oder bei Drücken auf die Schaltfläche Setzen auf Wert.

Einmaliges Setzen auf Wert bei Marke. Setzt den Encoderzähler bei Erreichen der ersten Referenzmarke auf den definierten Wert. Es gilt die erste Marke nach dem Einschalten des Controllers; ohne Ausschalten nur nach Drücken der Schaltfläche Nächste Marke verwenden.

Setzen bei allen Marken. Setzt den Encoderzähler auf den Startwert bei allen Marken oder wenn die Marke wieder erreicht wird z. B. bei traversierenden Bewegungen.

Spur A	
Spur B	
Nullimpuls /	Abb. 4

Abb. 40 Referenzsignal eines Encoders

6.1.2.6 Setzen auf Wert

Diese Funktion setzt die Encoder auf diesen Wert

- bei jedem Einschalten des Controllers,
- mit der Schaltfläche Setzen auf Wert.

Der Startwert muss kleiner als der Maximalwert sein und beträgt max. 4.294.967.294 (2 ^ 32-2).

6.1.2.7 Rücksetzen Referenzmarke

Setzt die Erkennung der Referenzmarke zurück.

6.1.3 Pegel Funktionseingänge

Für die Eingänge

- Synchronisation
- Multifunktion

muss der Pegel gewählt werden.

Eingangspegel	TTL / HTL	Legt den Eingangspegel für die Eingangsstufen fest.
		TTL: Low ≤ 0.8 V; High ≥ 2 V HTL: Low ≤ 3 V; High ≥ 8 V

6.1.4 Abschlusswiderstand

Der Abschlusswiderstand am Synchroneingang Sync/Trig wird aus- oder eingeschaltet, um Reflexionen zu vermeiden. An: mit Abschlusswiderstand Aus: kein Abschlusswiderstand

Der Abschlusswiderstand mit 120 Ohm muss im letzten Slave aktiviert werden.

6.2 Messwertaufnahme

6.2.1 Messrate

IFD2410/2411: Die Messrate kann kontinuierlich in einem Bereich von 0,1 kHz bis 8 kHz eingestellt werden. Die Schrittweite beträgt 1 Hz.

IFD2415: Die Messrate kann kontinuierlich in einem Bereich von 0,1 kHz bis 25 kHz eingestellt werden. Die Schrittweite beträgt 1 Hz.

Die Auswahl der Messrate erfolgt im Menü Einstellungen > Messwertaufnahme > Messrate.

Wählen Sie die gewünschte Messrate aus.

Zur Auswahl der Messrate ist die Beobachtung des Videosignales nützlich.

Vorgehensweise:

Positionieren Sie das Messobjekt in die Mitte des Messbereichs, siehe Abb. 41. Verändern Sie kontinuierlich die Messrate, bis Sie eine hohe Signalintensität erhalten, die aber nicht übersättigt ist.

Abb. 41 Definition Messbereich und Ausgangssignal

Verfolgen Sie dazu die LED Intensity.

LED	Zustand	Beschreibung	
	Rot	Signal in Sättigung	
Intensity	Gelb	Signal zu gering	
	Grün	Signal in Ordnung	

- Wechselt die Farbe der LED Intensity auf rot, erhöhen Sie die Messrate.
- Wechselt die Farbe der LED Intensity auf gelb, reduzieren Sie die Messrate.
- Wählen Sie die Messrate so, dass die LED Intensity grün leuchtet.
- Wechseln Sie eventuell die Belichtungsart, verwenden Sie Manueller Modus, siehe Kap. 6.2.5
- Nehmen Sie die gewünschte Messrate und passen Sie die Belichtungszeit an, oder die Belichtungszeit bestimmt die mögliche Messraten.

Ist das Signal niedrig (LED Intensity leuchtet gelb) oder gesättigt (LED Intensity leuchtet rot), misst der Controller, aber die Messgenauigkeit entspricht möglicherweise nicht den spezifizierten technischen Daten.

6.2.2 Triggerung Datenaufnahme

6.2.2.1 Allgemein

Die Messwertaufnahme am confocalDT IFD241x ist durch ein externes elektrisches Triggersignal oder per Kommando steuerbar.

- Die Triggerung hat keine Auswirkung auf die vorgewählte Messrate.
- Werkseinstellung: keine Triggerung, der Controller beginnt mit der Datenübertragung unmittelbar nach dem Einschalten.
- Die Pulsdauer des Triggersignals beträgt mindestens 5 µs.

	Triggerart	Pegel	Trigger-Level Low / fallende Flanke		
Sync /		Flanke	Trigger-Level	High / steigende Flanke	
Multifunktionseingang 1 / 2			Anzahl an Messwerten	manuelle Auswahl	Wert
				unendlich	
O a thursday				manuelle Auswahl	Wert
Sonware			Anzani der Messwerte	unendlich	
			Untere Grenze		Wert
Encoder 1		Obere Grenze		Wert	
		Schrittweite		Wert	
Inaktiv			kontinuierliche Messwertaufnahme		

Pegel-Triggerung. Kontinuierliche Messwertaufnahme, solange der gewählte Pegel anliegt. Danach beendet der Controller die Messwertaufnahme. Die Pulsdauer muss mindestens eine Zykluszeit betragen. Die darauffolgende Pause muss ebenfalls mindestens eine Zykluszeit betragen.

W = Wegsignal

Abb. 42 Triggerung mit aktivem High-Pegel (U), zugehöriges Analogsignal (A) und Digitalsignal (D)

Flanken-Triggerung. Startet Messwertaufnahme, sobald die gewählte Flanke am Triggereingang anliegt. Die Pulsdauer muss mindestens 5 μ s betragen.

Abb. 43 Triggerung mit fallender Flanke (U $_{p}$), zugehöriges Analogsignal (A $_{o}$) und Digitalsignal (D $_{o}$)

Software-Triggerung. Startet die Messwertaufnahme sobald ein Softwarebefehl (anstatt des Triggereinganges) oder die Schaltfläche Trigger auslösen betätigt wird.

Encoder-Triggerung. Startet die Messwertaufnahme durch Encoder 1.

6.2.2.2 Triggerung der Messwertaufnahme

Das aktuelle Zeilensignal wird erst nach einem gültigen Triggerereignis weiterverarbeitet und die Messwerte daraus berechnet. Die Messwertdaten werden dann für die weitere Berechnung (z. B. Mittelwert) sowie die Ausgabe über eine digitale oder analoge Schnittstelle weitergereicht.

In die Berechnung der Mittelwerte können deshalb unmittelbar vor dem Triggerereignis liegende Messwerte nicht einfließen, stattdessen aber ältere Messwerte, die bei vorhergehenden Triggerereignissen erfasst wurden.

6.2.2.3 Triggerzeitdifferenz

Da die Belichtungszeit nicht direkt durch den Triggereingang gestartet wird, kann man die jeweilige Zeitdifferenz zum Messzyklus ausgeben. Dieser Messwert kann z. B. dazu dienen, Messungen exakt einem Ort zuzuordnen, wenn Messobjekte mit konstanter Geschwindigkeit gescannt werden und jede Spur mit einem Triggerimpuls gestartet wird.

Die Zeit vom Zyklusstart bis zum Triggerereignis wird als Triggerzeitdifferenz bestimmt. Die Ausgabe der ermittelten Zeit erfolgt 3 Zyklen später, bedingt durch die interne Verarbeitung.

Abb. 44 Definition der Triggerzeitdifferenz

- 2 Zyklusstart bedeutet nicht Start der Belichtungszeit. Es besteht nur eine feste Differenz zwischen Zyklusstart und
- dem Ende der Belichtungszeit von 100 ns.

6.2.3 Zähler zurücksetzen

Der Messwertzähler kann zur Prüfung verwendet werden, ob alle Daten ausgegeben wurden oder ob ein Paket fehlt. Die Zählung beginnt bei Null. Zeitstempel und Messwertzähler können durch das Betätigen der jeweiligen Schaltfläche zurückgesetzt werden.

6.2.4 Maskierung Auswertebereich

Die Maskierung begrenzt den Bereich für die Abstands- oder Dickenberechnung im Videosignal. Diese Funktion wird verwendet, wenn z. B. Fremdlicht bestimmter Wellenlängen (blau, rot, IR) Störungen im Videosignal verursacht. Sie könnte auch den Hintergrund maskieren, falls dieser in den Messbereich hineinreicht.

Die Maskierung (Anfang, Ende) wird in die beiden linken Felder an der Seite (in %) eingetragen. Ab Werk ist die Markierung auf 0 % (Anfang) und 100 % (Ende) eingestellt.

• Bei der Begrenzung des Videosignals gilt, dass ein Peak nur erkannt wird, wenn er vollständig innerhalb des maskierten Bereichs liegt, d. h. über der Schwelle. Der Messbereich kann sich dadurch verringern.

Abb. 45 Begrenzung des verwendeten Videosignals

In dem gezeigten Beispiel in der Abbildung wird der Peak (1) für die Auswertung verwendet, wohingegen Peak (2) nicht verwendet wird.

6.2.5 Belichtungsmodus

Messmodus				
Manueller Modus	Belichtungszeit 1 in μ s	IFD2410/2411: Wert (3 μs 10.000 μs) IFD2415: Wert (3 μs 10.000 μs)		
2 Zeiten Modus alternierend	Belichtungszeit 1 in μ s	IFD2410/2411: Wert (3 μs 10.000 μs) IFD2415: Wert (3 μs 10.000 μs)		
	Belichtungszeit 2 (kürzere) in <i>µ</i> s	Wert (Wert kleiner als Belichtungszeit 1)		
2 Zeiten Modus automatisch	Belichtungszeit 1 in μ s	IFD2410/2411: Wert (3 μs 10.000 μs) IFD2415: Wert (3 μs 10.000 μs)		
	Belichtungszeit 2 (kürzere) in μs	Wert (Wert kleiner als Belichtungszeit 1)		

Wählen Sie die gewünschte Belichtungsart aus.

Messmodus. Die geforderte oder geeignete Messrate wird gehalten und nur die Belichtungszeit geregelt. Es gilt ein kleinerer Regelungsumfang bei schnellerer Messung. Hier können auch unterschiedlich reflektierende Messobjekte mit der gleichen Messrate gemessen werden. Dauert 1 bis maximal 7 Messzyklen (Wechsel von kein Messobjekt zu gut reflektierendem Messobjekt bei 0,1 kHz Messrate).

Manueller Modus. Ohne Regelung, einmal optimierte Parameter werden gehalten. Dies ist beispielsweise sinnvoll bei schnellen Sprüngen durch ein- und ausfahrende Messobjekte mit gleichen Oberflächen oder hochdynamische Bewegungen (kein Überschwingen). Stark wechselnde Messobjektoberflächen sollten in dieser Betriebsart nicht gemessen werden. Der manuelle Modus kann auch bei mehreren Schichten verwendet werden, wenn der hellste Peak nicht gemessen werden soll. Geeignete Messrate und Belichtungszeit können in der Videosignalanzeige aus dem Automatikmodus übernommen werden.

Zwei-Zeiten-Modus alternierend. Betriebsart mit 2 manuell eingestellten Belichtungszeiten, die immer abwechselnd angewendet werden. Geeignet für 2 sehr unterschiedlich hohe Peaks bei der Dickenmessung. Besonders empfohlen, wenn der kleinere Peak verschwindet bzw. der größere Peak übersteuert. Eine eventuell eingestellte Videomittelung wird hier ignoriert.

Zwei-Zeiten-Modus automatisch. Schnellster Modus mit 2 manuell voreingestellten Belichtungszeiten, von denen automatisch die besser geeignete gewählt wird. Dies empfiehlt sich bei der Abstandsmessung für sehr schnell wechselnde Oberflächeneigenschaften, z. B. verspiegeltes / entspiegeltes Glas.

6.2.6 Peaktrennung

6.2.6.1 Peakmodulation

Anwendung findet die Peakmodulation z. B. bei der Vermessung von dünnen Schichten. Ein Peak, der mit Hilfe der Erkennungsschwelle erkannt wurde, kann aus zwei oder mehreren überlappenden Peaks bestehen. Die Peakmodulation gibt an, wie stark das Videosignal moduliert sein muss, damit der Peak für die folgende Signalverarbeitung nochmals aufgeteilt wird.

Abb. 46 Getrennte Peaks: Messung möglich

Abb. 47 Peaks ineinander: Messunsicherheit wahrscheinlich

Die Modulation wird für jeden Peak getrennt bewertet, der mit Hilfe der Erkennungsschwelle erkannt wurde.

Defaultwert ist 50 % als Kompromiss zwischen der Trennbarkeit der Peaks und der Messunsicherheit durch gegenseitige Beeinflussung der Peaks.

- Erhöhen Sie den Wert, wenn der Controller Peaks aufteilt, die zusammen weiterverarbeitet werden sollen.
- Verringern Sie den Wert, wenn der Controller Peaks nicht trennt, die getrennt weiterverarbeitet werden sollen.

Beispiel 1: Mit der Defaulteinstellung wird keine Peaktrennung durchgeführt. Der Controller ermittelt aus dem Schwerpunkt im Videosignal einen Abstand. **Beispiel 2:** Mit einem geringeren Wert für die Peakmodulation erkennt der Controller zwei unabhängige Peaks im Videsignal und berechnet daraus die zwei Abstände.

Abb. 48 Beispiele für die Peakmodulation

Ein Ändern der Peakmodulation ist grundsätzlich nur in Sonderfällen erforderlich. Setzten Sie diese Funktion nur mit Bedacht ein.

6.2.6.2 Erkennungsschwelle

Die Erkennungsschwelle (in %, bezogen auf das dunkelkorrigierte Signal) legt fest, ab welcher Intensität ein Peak im Videosignal in die Auswertung einbezogen wird. Zur Festlegung ist deshalb die Beurteilung der Videokurve unerlässlich.

Mindestschwelle	Wert	Wert in %, ab Werk 2 %
-----------------	------	------------------------

Vorgabe der Erkennungsschwelle.

- Bei sehr schwachen Signalen, typisch bei hohen Messraten, ist die Erkennungsschwelle niedrig zu wählen, da nur Signalanteile oberhalb dieser Schwelle in die Berechnung eingehen.
- Legen Sie die Schwelle generell so hoch, dass keine störenden Peaks im Videosignal detektiert werden.

Die Erkennungsschwelle hat Auswirkungen auf die Linearität, deshalb möglichst wenig ändern.

6.2.7 Anzahl Peaks, Peakauswahl

Die Anzahl der Peaks ist gleichbedeutend mit der Anzahl an Materialübergängen eines Messobjektes innerhalb des Messbereiches.

Abb. 49 Transparentes Messobjekt mit einer Schicht

Abb. 50 Transparentes Messobjekt mit drei Schichten

- Diese Funktion wird genutzt, wenn ein Material vor oder zwischen den Nutzpeaks noch kleinere Störpeaks aufweist, die durch dünne Schichten auf dem Messobiekt verursacht werden. Diese Funktion ist mit Bedacht einzusetzen
- I die durch dünne Schichten auf dem Messobjekt verursacht werden. Diese Funktion ist mit Bedacht einzusetzen und wendet sich ausschließlich an Produktspezialisten.

Die Auswahl der Peaks entscheidet darüber, welche Bereiche im Signal für die Abstands- bzw. Dickenmessung genutzt werden. Bei einem Messobjekt, das aus mehreren transparenten Schichten besteht, ist eine Materialzuordnung zu den einzelnen Schichten erforderlich, siehe Kap. 6.2.8.

Die Peaks werden beginnend bei Messbereichsanfang Richtung Messbereichsende gezählt.

Peakauswahl	Erster Peak / Höchster Peak /	Definiert, welches Signal im Zeilensignal für die Auswertung verwendet wird	¹⁰⁰ ⊤ nah ← Sensor → fern
	Letzter Peak	Erster Peak: Nächstliegender Peak (Spit- ze) zum Sensor. Höchster Peak: Standard, Peak mit der höchsten Intensität. Letzter Peak: Entferntest liegender Peak	% Höchster Letzter 50 Erster Peak Peak Image: Second seco
		zum Sensor.	0 0 50 Bereich in % 100

IFD2410/2411	IFD2415	Messwerte	Peakauswahl
•	•	1 Messwert	erster Peak / höchster Peak / letzter Peak
	٠	2 Messwerte	erster und zweiter Peak / erster und letzter Peak / höchster und zweithöchster Peak / letzter und vorletzter Peak
	•	3 Messwerte	Individuell
	٠	4 Messwerte	Individuell
	•	5 Messwerte	Individuell
	٠	6 Messwerte	Individuell

Abb. 51 Möglichkeiten der Peakauswahl

Die Ermittlung der Peakhöhen wird anhand des hellkorrigierten Signals durchgeführt.

In der Standardeinstellung wird die Brechzahlkorrektur durchgeführt. Können jedoch mehr als 2 Peaks im Messbereich liegen, dann sollten für eine korrekte Brechzahlkorrektur immer gleich viele Peaks vorhanden sein. Wenn z. B. der erste oder letzte Peak von 3 Peaks manchmal aus dem Messbereich läuft, sollte die Brechzahlkorrektur besser ausgeschaltet werden, da dann die Brechzahlkorrektur auf eine andere Schicht angewendet wird, also keine eindeutige Zuordnung des Materials möglich ist.

6.2.8 Materialauswahl

Definieren Sie vor einer Materialauswahl die Anzahl an Schichten des Messobjektes bzw. die Anzahl an zu erwartenden Peaks im Videosignal, siehe Kap. 6.2.7. Andernfalls ist eine Materialzuweisung nicht möglich.

Für eine exakte Abstands- bzw. Dickenmessung ist im Controller eine Brechzahlkorrektur erforderlich.

- Wechseln Sie in das Menü Einstellungen > Messwertaufnahme > Materialauswahl.
- Aktivieren Sie die Brechzahlkorrektur. Klicken Sie dazu auf die Schaltfläche On im Menü Ein-/Ausschalten der Brechzahlkorrektur.
- Ordnen Sie, entsprechend dem verwendeten Messobjekt, die Materialien den einzeln Schichten zu.

Abb. 52 Schichtanordnung eines Messobjektes

Über die Schaltfläche Link zur Materialtabelle kann die Materialdatenbank im Controller erweitert oder auch gekürzt werden. Für das neue Material ist eine Brechzahl und die Abbezahl v_d oder drei Brechzahlen bei verschiedenen Wellenlängen (näherungsweise auch alle gleich) nötig.

Ein-/Ausschalten der Brechzahlkorrektur:		Pos	Material Name	Definition	nF bei 486nm	nd bei 587nm	nC bei 656nm	VD - Abbe- Zahl	Beschreibung
An Schicht 1:		1	Vacuum	NX	1.000000	1.000000	1.000000		vacuum, air (approximately)
BK7 Schicht 2:		2	Water	NX	1.337121	1.333044	1.331152		a liquid
Vacuum		3	Ethanol	NX	1.361400	1.361400	1.361400		ethyl alcohol, pure alcohol (a liquid)
	Ø	4	Acrylic	NX	1.497828	1.491668	1.488938		acrylic resin, adhesive, lacquer

Abb. 53 Auswahl materialspezifischer Brechzahlen

6.3 Signalverarbeitung, Rechnung

6.3.1 Datenquelle, Parameter, Rechenprogramme

In jedem Berechnungsblock kann ein Rechenschritt durchgeführt werden. Hierzu müssen das Rechen-Programm, die Datenquellen und die Parameter des Rechen-Programmes eingestellt werden.

Dicke	Differenzbildung	Zwei Signale oder Ergebnisse, Signal Abstand B < Signal Abstand A
Formel	Abstand A - Abstand B	
Berechnung	Summenbildung	Zwei Signale oder Ergebnisse
Formel	Faktor 1 * Abstand A +	Faktor 2 * Abstand B + Offset
	1	
Median	Sortiert die Messwerte u	ind gibt den mittleren Wert als Median aus
Gleitende Mittelung	Bildet den arithmetische	en Mittelwert
Rekursive Mittelung	Jeder neue Messwert wi	ird gewichtet zur Summe der vorherigen Mittelwerte hinzugefügt
Duplizieren	Erstellt die Kopie eines	Signals

Abb. 54 Mögliche Rechenprogramme

Reihenfolge für das Anlegen eines Berechnungsblockes, siehe Abb. 55:

•	Wählen Sie ein Programm (1), z. B. Mittelwert, aus.		Rechnung 1
	Definieren Sie die Parameter 2	1	Berechnungsfunktion Berechnung
₽	Bestimmen Sie die Datenquelle(n) (3).	2	Faktor 1: -1.0
	Geben Sie dem Block einen Namen ④.	3	Abstand A: 01DIST1
	Klicken Sie auf die Schaltfläche Berechnung übernehmen.		Faktor 2:
		2	1.0
			Name:
		4	Schicht_1
Abb.	55 Reihenfolge bei der Programmauswahl	5	Berechnung übernehmen

Die Programme Berechnung und Dicke besitzen zwei Datenquellen, die Mittelwertprogramme und Duplizieren jeweils eine Datenquelle.

Berechnungs-Parameter	Faktor 1 / 2	Wert	-32768,0 32767,0		
(Programm Berechnung)	Offset	Wert	-2147,0 2147,0		
	Mittelungstyp	ttelungstyp Rekursiv / Gleitend / Median			
Berechnungs-Parameter (Pro-	Mittelwerttiefe	Wert	Rekursiv: 2 … 32000		
gramm Mittelwert)			Gleitend: 2 / 4 / 8 / 16 / 32 / 64 / 128 / 256 / 512 / 1024 / 2048 / 4096		
			Median: 3 / 5 / 7 / 9		
Die Mittelwerttiefe gibt en über wie viele fortlaufende Messwerte im Controller gemittelt werden soll, bevor ein neuer					

Die Mittelwerttiefe gibt an, über wie viele fortlaufende Messwerte im Controller gemittelt werden soll, bevor ein neuer Messwert ausgegeben wird.

6.3.2 Definitionen

Abstandswert(e)	01DIST1, 01DIST2, 01DIST6
Pro Kanal/Sensor sind max 10 Berechnungsblöcke möglich. Die Abarbeitung der Berechnungsblöcke erfolgt sequentiell.	OxDISTn Block 1 Block 2 OxDISTn Block 2 Block 1 Block 1
Rückkoppelungen (algebraische Schleifen) über einen oder mehrere Blöcke sind nicht möglich. Als Datenquellen können nur die Abstandswerte bzw. die Rechenergebnisse der vorher- gehenden Berechnungsblöcke verwendet werden.	Block 1 Berechnung
Reihenfolge der Verarbeitung:	
1. Unlinearisierte Abstände	
2. Linearisierung der Abstände	
3. Brechzahlkorrektur der Abstände	
4. Fehlerbehandlung bei keinem gültigen Messwert	
5. Ausreißerkorrektur der Abstände	
6. Berechnungsblöcke	
7. Statistik	

6.3.3 Messwertmittelung

Die Messwertmittelung erfolgt nach der Berechnung der Messwerte vor der Ausgabe über die Schnittstellen oder deren Weiterverarbeitung.

Durch die Messwertmittelung wird

- die Auflösung verbessert,
- das Ausblenden einzelner Störstellen ermöglicht oder
- das Messergebnis "geglättet".
- Das Linearitätsverhalten wird mit einer Mittelung nicht beeinflusst. Die Mittelung hat keinen Einfluss auf die Messrate bzw. Ausgaberate.

In jedem Messzyklus wird der interne Mittelwert neu berechnet.

Der eingestellte Mittelwerttyp und die Anzahl der Werte müssen im Controller gespeichert werden, damit sie nach dem Ausschalten erhalten bleiben.

Der Controller wird ab Werk mit der Voreinstellung "gleitende Mittelung, Mittelwerttiefe = 16", d. h. mit Mittelwertbildung ausgeliefert.

Gleitender Mittelwert

Über die wählbare Anzahl N aufeinanderfolgender Messwerte (Fensterbreite) wird der arithmetische Mittelwert M_g nach folgender Formel gebildet und ausgegeben:

N	MW = Messwert,
) MW (k)	N = Mittelungszahl,
$M_{z1} = \frac{k=1}{k=1}$	k = Laufindex (im Fenster)
N N	$M_{\rm ol} =$ Mittelwert bzw. Ausgabewert

Jeder neue Messwert wird hinzugenommen, der erste (älteste) Messwert aus der Mittelung (aus dem Fenster) wieder herausgenommen. Dadurch werden kurze Einschwingzeiten bei Messwertsprüngen erzielt.

Beispiel: N = 4

... 0, 1, 2, 2, 1, 3

$$\downarrow$$

 $\frac{2, 2, 1, 3}{4} = M_{g^{i}}(n)$
... 1, 2, 2, 1, 3, 4
 \downarrow
 $\frac{2, 1, 3, 4}{4} = M_{g^{i}}(n+1)$
Ausgabewert

 Bei der gleitenden Mittelung im Controller sind f
ür die Mittelungszahl N nur die Potenzen von 2 zugelassen. Die gr
ößte Mittelungszahl ist 1024.

Abb. 56 Gleitendes Mittel, N = 8

Anwendungshinweise

- Glätten von Messwerten
- Die Wirkung kann fein dosiert werden im Vergleich zur rekursiven Mittelung
- Bei gleichmäßigem Rauschen der Messwerte ohne Spikes
- Bei geringfügig rauer Oberfläche, bei der die Rauheit eliminiert werden soll
- Auch für Messwertsprünge geeignet bei relativ kurzen Einschwingzeiten

Rekursiver Mittelwert

Formel:

MW = Messwert,

$$M_{\rm rek}(n) = \frac{MW_{(n)} + (N-1) \times M_{\rm rek(n-1)}}{N}$$

N = Mittelungszahl, N = 1 ... 32768

n = Messwertindex

 $M_{\rm rek}$ = Mittelwert bzw. Ausgabewert

Jeder neue Messwert MW(n) wird gewichtet zur Summe der vorherigen Mittelwerte M_{rek} (n-1) hinzugefügt.

Die rekursive Mittelung erlaubt eine sehr starke Glättung der Messwerte, braucht aber sehr lange Einschwingzeiten bei Messwertsprüngen. Der rekursive Mittelwert zeigt Tiefpassverhalten.

Abb. 57 Rekursives Mittel, N = 8

Anwendungshinweise

- Erlaubt eine sehr starke Glättung der Messwerte. Lange Einschwingzeiten bei Messwertsprüngen (Tiefpassverhalten)
- Starke Glättung von Rauschen ohne große Spikes
- Für statische Messungen, um das Signalrauschen besonders stark zu glätten
- Für dynamische Messungen an rauen Messobjekt-Oberflächen, bei der die Rauheit eliminiert werden soll, z. B. Papierrauhigkeit an Papierbahnen
- Zur Eliminierung von Strukturen, z. B. Teile mit gleichmäßigen Rillenstrukturen, gerändelte Drehteile oder grob gefräste Teile
- Ungeeignet bei hochdynamischen Messungen

Median

Aus einer vorgewählten Anzahl von Messwerten wird der Median gebildet.

Bei der Bildung des Medians im Controller werden die einlaufenden Messwerte nach jeder Messung neu sortiert. Der mittlere Wert wird danach als Median ausgegeben.

Es werden 3, 5, 7 oder 9 Messwerte berücksichtigt. Damit lassen sich einzelne Störimpulse unterdrücken. Die Glättung der Messwertkurven ist jedoch nicht sehr stark.

Beispiel: Median aus fünf Messwerten

 $\dots 0 \ 1 \ \underline{2} \ 4 \ 5 \ 1 \ \underline{3} \ \rightarrow Messwerte \ sortiert: 1 \ 2 \ \underline{3} \ 4 \ 5 \qquad Median_{(n)} = 3 \\ \dots 1 \ 2 \ \underline{4} \ 5 \ 1 \ \underline{3} \ \underline{5} \ \rightarrow Messwerte \ sortiert: 1 \ 3 \ \underline{4} \ 5 \ 5 \qquad Median_{(n+1)} = 4$

Abb. 58 Median, N = 7

Anwendungshinweise

- Glättung der Messwertkurve nicht sehr stark, eliminiert vor allem Ausreißer
- Unterdrückt einzelne Störimpulse
- Bei kurzen starken Signalpeaks (Spikes)
- Auch bei Kantensprüngen geeignet (nur geringer Einfluss)
- Bei rauer, staubiger oder schmutziger Umgebung, bei der Schmutzpartikel oder die Rauheit eliminiert werden sollen
- Zusätzliche Mittelung kann nach dem Medianfilter verwendet werden

6.4 Nachbearbeitung

6.4.1 Nullsetzen, Mastern

Durch Nullsetzen und Mastern können Sie den Messwert genau auf einen bestimmten Sollwert im Messbereich setzen. Der Ausgabebereich wird dadurch verschoben. Sinnvoll ist diese Funktion z. B. für mehrere nebeneinander messende Sensoren, bei der Dicken- und Planaritätsmessung. Bei der Dickenmessung eines transparenten Messobjektes ist die echte Dicke eines Masterobjektes als Masterwert einzugeben.

Masterwert	Wort	Angabe, z. B. der Dicke, eines Masterstückes.
in mm	Went	Wertebereich: -2147,0 +2147,0 mm

Mastern wird zum Ausgleich von mechanischen Toleranzen im Messaufbau der Sensoren oder der Korrektur von zeitlichen (thermischen) Änderungen am Messsystem verwendet. Das Mastermaß, auch als Kalibriermaß bezeichnet, wird dabei als Sollwert vorgegeben.

Der beim Messen eines Masterobjektes am Controllerausgang ausgegebene Messwert ist der Masterwert. Das Nullsetzen ist eine Besonderheit des Masterns, weil hier der Masterwert "O" beträgt.

Die Funktion Mastern/Nullsetzen ist nicht kanalspezifisch. Der Controller kann bis zu 10 Mastersignale verwalten. Diese 10 Signale können auf alle intern bestimmten Werte, auch verrechnete Werte, angewandt werden.

• "Mastern" oder "Nullsetzen" erfordert ein Messobjekt im Messbereich. "Mastern" und "Nullsetzen" beeinflussen die Analog- / Digitalausgänge und die Anzeige Webinterface.

Mastern via den Multifunktionseingängen MFI 1/2

- 1 durch externe Quelle auslösen oder zurücknehmen.
- 2 Auswahl Signale, die durch die Multifunktionseingänge (1) gemastert werden sollen.

Übersicht aller vorhandenen Signale für die Funk-3 tion. Auswahl eines Signales, um Masterwert mit

- (4) und (5) zuweisen zu können.
- 4 Masterwert eingeben.
- 5 Schaltfläche zum Speichern oder Löschen eines Signals aus (3).
- 6 Auswahl eines bestimmten Signals oder Mastern auf alle definierten Signale (8) anwenden.
- 7 Funktion via Software starten bzw. stoppen für Signal (6).
- 8 Übersicht aller vorhandenen Signale und deren Masterwert für die Funktion.

Abb. 61 Dialog zum Mastern, Übersicht der einzelnen Masterwerte

Beim Mastern wird die Ausgangskennlinie parallel verschoben. Die Kennlinienverschiebung verkleinert den nutzbaren Messbereich des Sensors, je weiter Masterwert und Masterposition voneinander entfernt sind.

Ablauf Mastern / Nullsetzen:

Bringen Sie Messobjekt und Sensor in die gewünschte Position zueinander.

Setzen Sie den Masterwert, Webinterface/ASCII.

Nach dem Mastern liefert der Controller neue Messwerte, bezogen auf den Masterwert. Durch ein Rücksetzen mit der Schaltfläche Masterwert rücksetzen wird wieder der Zustand vor dem Mastern eingestellt.

Abb. 62 Kennlinienverschiebung beim Mastern

Abb. 63 Ablaufdiagramm für Nullsetzen, Mastern (Taste Multifunction)

Die Funktion Nullsetzen/Mastern kann mehrfach hintereinander angewendet werden.

Abb. 64 Ablaufdiagramm für die Rücknahme Nullsetzen, Mastern

6.4.2 Statistik

Das Messsystem leitet aus dem Ergebnis der Messung folgende Statistikwerte ab:

- Minimum,
- Maximum und
- Peak-to-Peak.

Die Statistikwerte werden aus den Messwerten innerhalb des Auswertebereiches berechnet. Der Auswertebereich wird mit jedem neuen Messwert aktualisiert. Die Statistikwerte werden im Webinterface, Bereich Messwertanzeige, angezeigt oder über die Schnittstellen ausgegeben.

Die Statistikwerte sind nicht kanalspezifisch. Der Controller kann bis zu 3 Statistiksignale verwalten. Diese 3 Signale können auf alle intern bestimmten Werte, auch verrechnete Werte, angewandt werden.

Abb. 65 Dialog für die Statistik, Übersicht der einzelnen Statistiksignale

- 1 Über die Schaltfläche Statistikwert rücksetzen kann ein bestimmtes Signal oder alle Statistiksignale zurückgesetzt und damit ein neuer Auswertezyklus (Speicherperiode) eingeleitet werden. Am Beginn eines neuen Zyklus werden die alten Statistikwerte gelöscht.
- 2 Schaltfläche zum Löschen eines Signals.
- 3 Anzahl der Messwerte, über die Minimum, Maximum und Peak-to-Peak für ein Signal ermittelt werden. Der Wertebereich für die Berechnung kann zwischen 2 und 8192 (in Potenzen von 2) liegen oder alle Messwerte einschließen.
- 4 Signal für die Funktion auswählen.
- 5 Übersicht aller vorhandenen Signale für die Funktion.

Reihenfolge für das Anlegen einer Statistikauswertung:

- ▶ Wechseln Sie in den Reiter Einstellungen > Nachbearbeitung > Statistik.
- Wählen Sie ein Signal aus (4), für das die Statistikwerte berechnet werden sollen.
- Bestimmen Sie mit Statistikwert den Auswertebereich.

6.4.3 Datenreduktion, Ausgabe-Datenrate

Datenreduktion	Wert	Weist den Controller an, welche Daten von der Ausgabe ausgeschlossen wer- den und somit die zu übertragende Datenmenge reduziert wird.
Reduzierung gilt für	RS422 / Analog	Die für die Unterabtastung vorgesehenen Schnittstellen sind mit der Checkbox auszuwählen.

Sie können die Messwertausgabe im Controller reduzieren, wenn Sie im Webinterface oder per Befehl die Ausgabe jedes n-ten Messwertes vorgeben. Die Datenreduktion bewirkt, dass nur jeder n-te Messwert ausgegeben wird. Die anderen Messwerte werden verworfen. Der Reduktionswert n kann von 1 (jeder Messwert) bis 3.000.000 gehen. Damit können Sie langsamere Prozesse, z. B. eine SPS, an den schnellen Controller anpassen, ohne die Messrate reduzieren zu müssen.

6.4.4 Fehlerbehandlung (Letzten Wert halten)

Kann kein gültiger Messwert ermittelt werden, wird ein Fehler ausgegeben. Wenn das bei der weiteren Verarbeitung stört, kann alternativ dazu der letzte gültige Wert über eine bestimmte Zeit gehalten, d. h. wiederholt ausgegeben werden.

Fehlerbe- handlung	Fehlerausgabe, kein Messwert	Schnitts	Schnittstellen geben anstatt der Messwerte einen Fehlerwert aus.				
	Letzten Wert unendlich halten	Schnitts wert zur	Schnittstellen geben den letzten gültigen Messwert aus, bis ein neuer gültiger Mess- wert zur Verfügung steht.				
	Letzten Wert halten	Wert	Die Anzahl der Werte, die gehalten werden sollen, kann zwischen 1 und 1024 liegen. Bei Anzahl = 0 wird der letzte Wert solange gehalten, bis ein neuer gültiger Messwert erscheint.				

6.5 Ausgänge

6.5.1 Schnittstelle RS422

Die Schnittstelle RS422 hat eine maximale Baudrate von 921600 Baud. Die Baudrate ist im Auslieferungszustand auf 115,2 kBaud eingestellt. Die Konfiguration erfolgt über ASCII-Befehle oder über das Webinterface.

Die Übertragungseinstellungen von Controller und PC müssen übereinstimmen.

Datenformat: Binär. Schnittstellenparameter: 8 Datenbits, keine Parität, 1 Stoppbit (8N1). Die Baudrate ist wählbar.

Über die Schnittstelle RS422 werden 18 Bit pro Ausgabewert übertragen.

Die Höchstanzahl an Messwerten, die für einen Messpunkt übertragen werden können, hängen von der Controller-Messrate und der eingestellten Übertragungsrate der RS422-Schnittstelle ab. Soweit wie möglich sollte die höchste vorhandene Übertragungsrate (Baudrate) verwendet werden.

Eine parallele Ausgabe von Messdaten über RS422 und EtherNet/IP ist möglich.

6.5.2 RS422

Die Auswahl der Ausgabedaten aus allen intern bestimmten Werten und den berechneten Werten aus den Rechenmodulen erfolgt getrennt für beide Schnittstellen. Diese werden in einer festen Reihenfolge ausgegeben.

Abb. 67 Auswahl der Ausgabedaten
6.5.3 Analogausgang

Es kann nur ein Messwert übertragen werden. Die Auflösung des Analogausganges beträgt 16 Bit.

Ausgangssignal	01DIST1 / 01DIST6 /	Die Datenauswahl ist a fasst neben den Absta modulen.	abhängig von den aktuellen Einstellungen und um- Indswerten auch die Ergebnisse aus den Rechen-
Ausgabebereich	4 20 mA / 0 5 V / 0 10 V	Am IFD241x kann wah genutzt werden.	lweise nur der Spannungs- oder der Stromausgang
Skalierung	Standardskalierung	Skalierung auf 0 Me	essbereich
	Zweipunktskalierung	Bereichsanfang entspricht (in mm):	Wert
		Bereichsende entspricht (in mm):	Wert

Der erste Wert entspricht dem Messbereichsanfang, der zweite Wert dem Messbereichsende. Soll der Analogbereich verschoben werden, empfiehlt sich die Funktion Nullsetzen/Mastern zu verwenden.

Die Zweipunktskalierung ermöglicht die getrennte Vorgabe von Bereichsanfang und -ende in Millimeter im Messbereich des Sensors. Der verfügbare Ausgabebereich des Analogausgangs wird dann zwischen dem minimalen und maximalen Messwert gespreizt. Damit sind auch fallende Analogkennlinien möglich, siehe Abb. 68.

Abb. 68 Skalierung des Analogsignals

6.5.3.1 Berechnung Messwert aus Stromausgang

Stromausgang (ohne Mastern, ohne Zweipunktskalierung)

Variablen	Wertebereich	Formel
I _{out} = Strom [mA]	[3,8; <4] MBA-Reserve [4; 20] Messbereich [>20; 20,2] MBE-Reserve	$d = \frac{(I_{OUT} - 4)}{* MB}$
MB = Messbereich [mm]	{/1/2/3/6/10}	16
d = Abstand [mm]	[-0,01MB; 1,01MB]	

Stromausgang (mit Zweipunktskalierung)

Variablen	Wertebereich	Formel
I _{out} = Strom [mA]	[3,8; <4] MBA-Reserve [4; 20] Messbereich [>20; 20,2] MBE-Reserve	. (/ _{OUT} - 4)
<i>MB</i> = Messbereich [mm]	{/1/2/3/6/10}	$d = \frac{16}{16} * n - m $
m, n = Teachbereich [mm]	[0; MB]	
d = Abstand [mm]	[m; n]	

6.5.3.2 Berechnung Messwert aus Spannungsausgang

Spannungsausgang (ohne Mastern, ohne Zweipunktskalierung)

Variablen	Wertebereich	Formel
U _{out} = Spannung [V]	[-0,05; <0] MBA-Reserve [0; 5] Messbereich [>5; 5,05] MBE-Reserve [-0,1; <0] MBA-Reserve [0; 10] Messbereich [>10; 10,1] MBE-Reserve	$d = \frac{U_{\text{OUT}}}{5} * MB$ $d = \frac{U_{\text{OUT}}}{10} * MB$
MB = Messbereich [mm]	{/1/2/3/6/10}	
d = Abstand [mm]	[-0,01MB; 1,01MB]	

Spannungsausgang (mit Zweipunktskalierung)

Variablen	Wertebereich	Formel
U _{out} = Spannung [V]	[-0,05; <0] MBA-Reserve [0; 5] Messbereich [>5; 5,05] MBE-Reserve [-0,1; <0] MBA-Reserve [0; 10] Messbereich [>10; 10,1] MBE-Reserve	$d = \frac{V_{\text{OUT}}}{5} * n - m $ $d = \frac{V_{\text{OUT}}}{10} * n - m $
<i>MB</i> = Messbereich [mm]	{/1/2/3/6/10}	
m, n = Teachbereich [mm]	[0; MB]	
d = Abstand [mm]	[m; n]	

6.5.4 Datenausgabe

Ausgabeschnittstellen F	RS422 / Analogausgang / Schaltausgang	Entscheidet über die genutzte Schnittstelle für die Messwert- ausgabe. Die Messwerte werden parallel über die ausgewähl- ten Schnittstellen ausgegeben.
-------------------------	--	---

6.6 Systemeinstellungen

6.6.1 Einheit Webinterface

Das Webinterface unterstützt in der Darstellung der Messergebnisse die Einheiten Millimeter (mm) und Zoll (Inch). Als Sprache ist im Webinterface Deutsch oder Englisch möglich. Wechseln Sie die Sprache in der Menüleiste.

6.6.2 Tastensperre

Die Tastensperre verhindert unbefugtes oder ungewolltes Ausführen der Tastenfunktionen. Eine Tastensperre kann individuell für die Taste Multifunction bzw. Correct eingerichtet werden.

Tastensperre	Automatisch	Wert (1 60 min)	Die Tastenfunktion wird nach Ablauf einer definierten Zeit blockiert.
	Aktiv		Die Tastenfunktion wird unmittelbar blockiert
	Inaktiv		Keine Tastensperre

Die Tastensperre kann nur mit der Zugriffsberechtigung Experte deaktiviert werden.

6.6.3 Laden und Speichern

Dieses Kapitel beschreibt, wie ein Setup entweder mit Messeinstellungen oder mit Geräteeinstellungen gesichert wird. Hier finden Sie auch die Funktionen für den Import und Export der Setups, siehe Kap. 5.9.

6.6.4 Zugriffsberechtigung

Die Vergabe eines Passwortes verhindert unbefugtes Ändern von Einstellungen am System. Im Auslieferungszustand ist der Passwortschutz nicht aktiviert. Der Controller arbeitet in der Benutzerebene Experte. Nach erfolgter Konfiguration des Controllers sollte der Passwortschutz aktiviert werden. Das Standard-Passwort für die Expertenebene lautet "000".

 Das Standard-Passwort oder ein benutzerdefiniertes Passwort wird durch ein Software-Update nicht geändert. Das Experten-Passwort ist unabhängig vom Setup und wird damit auch nicht mit dem Setup zusammen geladen oder gespeichert.

Für den Bediener sind folgende Funktionen zugänglich:

	Bediener	Experte
Passwort erforderlich	nein	ja
Einstellungen ansehen	ja	ja
Einstellungen ändern, Passwort ändern	nein	ja
Messwerte, Videosignal ansehen	ja	ja
Skalierung Diagramme	ja	ja
Werkseinstellung setzen	nein	ja

Abb. 69 Rechte in der Benutzerhierarchie

Zugriffsberechtigung	
Aktuelles Benutzerlevel	
Bediener	
Passwort für die Anmeldung als Experte	
Passwort für die Anmeldung	g
Benutzerlevel beim Neustart	
Experte	

Tippen Sie das Standard-Passwort "000" oder ein benutzerdefiniertes Passwort in das Feld Passwort ein und bestätigen Sie die Eingabe mit Anmelden.

Abb. 70 Wechsel in die Benutzerebene Experte

Die Benutzerverwaltung ermöglicht die Vergabe eines benutzerdefinierten Passwortes in der Betriebsart Experte.

confocalDT IFD2410/2411/2415 / EtherNET/IP

Passwort	Wert	Bei allen Passwörtern wird die Groß/Kleinschreibung beachtet, Zahlen sind erlaubt. Sonderzeichen sind nicht zugelassen.
Benutzer-Level beim Neustart	Bediener / Experte	Legt die Benutzerebene fest, mit der das System nach dem Wiedereinschalten startet. MICRO-EPSILON empfiehlt hier die Auswahl Experte.

6.6.5 System rücksetzen

In diesem Menübereich können Sie einzelne Einstellungen auf die Werkseinstellung zurücksetzen.

Geräteeinstellungen	Es werden die Einstellungen für folgende Kommandos auf die Werkseinstellung zurückgesetzt: ANALOGRANGE, BAUDRATE, ECHO, KEYLOCK, LED.
	Die Betriebsart ist von den Geräteeinstellungen nicht betroffen.
Messeinstellungen	Setzt das Preset auf Standard matt und alle Parame- ter, ausgenommen Schnittstelleneinstellungen, auf die Werkseinstellung zurück.
Zurücksetzen Materialdatenbank	Alle Einstellungen für die Materialtabelle werden auf Werkseinstellung gesetzt.
Alles zurücksetzen	Setzt die Geräte- und die Messeinstellungen auf die Werkseinstellungen zurück.
Sensor neu starten	Startet das System mit den zuletzt gespeicherten Einstellungen

6.6.6 Lichtquelle

Sie können die Lichtquelle für das System ein- oder ausschalten. Dies ist via Software oder mit den Multifunktionseingängen MFI1/2 möglich.

7. Dickenmessung, Einseitig, transparentes Messobjekt

7.1 Voraussetzung

Für eine einseitige Dickenmessung eines transparenten Messobjektes wertet der Controller zwei an den Oberflächen reflektierte Signale aus. Der Controller berechnet aus beiden Signalen die Abstände zu den Oberflächen und daraus die Dicke.

- Richten Sie den Sensor senkrecht auf das zu messende Objekt. Achten Sie darauf, dass sich das Messobjekt in etwa in Messbereichsmitte (= MBA + 0,5 x MB) befindet.
- Der Lichtstrahl muss senkrecht auf die Objektoberfläche treffen, andernfalls sind Messunsicherheiten nicht auszuschließen.

Abb. 71 Einseitige Dickenmessung an einem transparenten Messobjekt

MBA	Messbereichsanfang	
MB	Messbereich	
Minimale Messobjektdicke	Ciche Kanitel Technische Deten	
Maximale Messobjektdicke	Siene Kapitei Technische Daten	

7.2 Preset

confocalDT IFD2415		confocalDT IFD2410/2411	
Wechseln Sie in das Menü Home.			
	Wählen Sie in der Konfigurationsauswahl		Wählen Sie in der Konfigurationsauswahl
	Multilayer Luftspalt.		Einseitige Dickenmessung.

Diese Voreinstellung veranlasst den Controller den ersten und zweiten Peak im Videosignal für die Dickenberechnung zu verwenden.

Rechnung 1 im Controller: Dicke	Rechnung 1 im Controller: Dicke
Differenz aus DIST2 und DIST1	Differenz aus DIST2 und DIST1
Rechnung 2 im Controller: Dicke Differenz aus DIST3 und DIST2	

7.3 Materialauswahl

Für die Berechnung eines korrekten Dickenmesswertes ist die Angabe des Materials unerlässlich. Um die spektrale Änderung des Brechungsindex auszugleichen, sollten wenigstens drei Brechzahlen bei verschiedenen Wellenlängen oder eine Brechzahl und die Abbezahl bekannt sein.

▶ Wechseln Sie in das Menü Einstellungen > Messwertaufnahme >Materialauswahl.

Wählen Sie für Schicht 1 und evtl. Schicht 2 den Werkstoff des Messobjektes aus.

7.4 Videosignal

Befindet sich eine Oberfläche des Messobjekts außerhalb des Messbereichs, liefert der Controller nur ein Signal für den Weg, die Intensität und den Schwerpunkt. Dies kann auch der Fall sein, wenn ein Signal unterhalb der Erkennungsschwelle liegt.

Bei der Dickenmessung eines transparenten Materials sind zwei Grenzflächen aktiv. Im Videosignal sind dementsprechend auch zwei Peaks sichtbar, siehe Abb. 72.

Auch wenn die Erkennungsschwelle einmal knapp unterhalb des Sattels zwischen den beiden Peaks liegen sollte, kann der Controller beide Abstände ermitteln und daraus die Dicke errechnen.

Abb. 72 Webseite Videosignal, Einseitige Dickenmessung

7.5 Signalverarbeitung

Die Konfigurationsauswahl Einseitige Dickenmessung enthält auch Voreinstellungen für die Dickenberechnung aus den beiden Abstandssignalen Weg1 und Weg2, siehe Abb. 72.

Im nachgelagerten zweiten Berechnungsblock Rechnung 2 durchlaufen die Dickenwerte eine gleitende Mittelung mit einer Mittelungstiefe von 16 Werten.

Passen Sie die Signalverarbeitung Ihrer Messaufgabe an.

Sensor	Rechnung 1
Eingänge	Berechnungsfunktion
	Dicke 💟
Messwertaufnahme	Abstand A:
Signalverarbeitung	01DIST2
$\tau = \frac{n-1}{2}$ Rechnung 1 Dicke: 01DIST2: 01DIST1	Abstand B: 01DIST1
$\tau = \frac{n-1}{2}$ Rechnung 2 Gleitende Mittelung: Ch01	Name: Ch01Thick12
+ Rechenmodul hinzufügen	Berechnung übernehmen

7.6 Messwertanzeige

Wechseln Sie in den Reiter Messwertanzeige und wählen Sie als Diagrammtyp Mess.

Abb. 73 Dickenmessergebnisse aus einseitiger Dickenmessung mit einem Sensor

In der Webseite werden die beiden Abstände und die Dicke (Differenz aus 01DIST2 und 01DIST1) grafisch und numerisch gezeigt, wahlweise können auch die Intensitäten für beide Peaks (Peak 1 = nah, Peak 2 = fern) eingeblendet werden.

8. EtherNet/IP, Dokumentation

8.1 Vorbemerkung

Der Sensor startet mit der zuletzt gespeicherten Betriebsart. Standard ist EtherNet/IP. Der EtherNet/IP-Betrieb ermöglicht eine einfache Programmierung eines Sensors, siehe Kap. 5.2, siehe Kap. 6.

8.2 Einstellungen speichern, EtherNet/IP-Betrieb fortsetzen

Gehen Sie in das Menü Einstellungen > Systemeinstellungen > Laden&Speichern oder klicken Sie auf die Schaltfläche Einstellungen speichern, siehe Kap. 6.6.3.

Der Sensor speichert nun die Einstellungen auch in die Objekte für die Verwendung im EtherNet/IP-Betrieb.

Setzen Sie Ihre Arbeit in Ihrer SPS-Umgebung fort.

8.3 Allgemein

EtherNet/IP ist ein von der Open DeviceNet Vendor Association (ODVA) entwickelter, ethernetbasierter Feldbus, der auf den Protokollen TCP und UDP aufbaut. Das IP in EtherNet/IP steht für Industrial Protocol. Als Anwendungsprotokoll kommt das Common Industrial Protocol (CIP) zum Einsatz. CIP unterscheidet zwischen

- Implicit Messages: zeitkritische, zyklische Prozessdaten; Übertragung erfolgt über UDP,
- Explicit Messages: azyklische Bedarfsdaten; Übertragung erfolgt über TCP.

Explicit Messages arbeiten nach dem Client/Server-Modell und Implicit Messages arbeiten nach dem Producer/Consumer-Modell.

Beide setzen eine CIP-Verbindung voraus. Es ist auch möglich, Explicit Messages ohne eine CIP-Verbindung über sogenannte Unconnected Explicit Messages auszutauschen.

CIP (Common Industrial Protocol)						
Implicit Messages	Explicit Messages					
UDP	TCP					
I/O-Connections	Explicit Messaging Connections					
Austausch von Prozessdaten von einem	Austausch von Daten zwischen zwei Gerä-					
Producer an ein oder mehrere Consumer	ten nach dem Client/Server-Modell					

Abb. 74 CIP Stack und Transport von Daten nach dem ISO/OSI-Referenzmodell

EtherNet/IP unterscheidet zwei Arten von Geräten: EtherNet/IP-Scanner und EtherNet/IP-Adapter. Beim Sensor/Controller mit EtherNet/IP handelt es sich um einen EtherNet/IP-Adapter. Um Daten mit einem EtherNet/IP-Adapter auszutauschen wird ein EtherNet/IP-Scanner benötigt.

8.4 Explicite Messaging

CIP ist ein objektorientiertes Konzept, welches an die objektorientierte Programmierung angelehnt ist. Ein Ethernet/IP-Gerät wird durch eine Menge von CIP-Objekten modelliert. Ein Objekt besteht aus einer Klasse, von der wiederum ein oder mehrere Instanzen existieren können. Klassen und Instanzen verfügen weiterhin über Attribute. Attribute dienen dazu, das EtherNet/IP-Gerät zu konfigurieren, in dem schreibend oder lesend auf die Attribute zugegriffen wird. Die Adressierung eines Objekts erfolgt über die Class-ID, Instance-ID und die Attribute-ID. Weiterhin ist von Bedeutung, wie auf ein Objekt zugegriffen wird, z. B. ob schreibend oder lesend. Diese Information wird durch den Service-Code festgelegt.

Object 1	Object 2	Object n		
Class (Class-ID)	Attribute 1 (Attribute-ID) Attribute n	read/write		
Instance 1 (Instance-ID)	Attribute 1 (Attribute-ID) Attribute n	read/write		
Instance n	Attribute 1 Attribute n	read/write		

Abb. 75 Beispiel Explicit Message mit den Informationen über Class-ID, Instance-ID, Attribute-ID und Service-Code

Bei den Objekten wird unterschieden zwischen

- Standardobjekten, die auch bei unterschiedlichen Geräten immer den gleichen Aufbau haben und
- herstellerspezifischen Objekten, die je nach Hersteller einen anderen Aufbau aufweisen.

Die Standardobjekte besitzen eine Class-ID im Bereich 0x0001 bis 0x0043 oder 0x00F0 bis 0x2FF. Die Class-ID von herstellerspezifischen Objekten bewegt sich in einem Bereich von 0x0064 bis 0x00C1.

8.4.1 Standard-Objekte

8.4.1.1 Übersicht

Class-ID	Name	
0x0001	Identity Object	
0x0004	Assembly Object	
0x00F5	TCP/IP Interface Object	
0x0043	Time Sync Object	

Abb. 76 Übersicht Standard-Objekte

8.4.1.2 Object 0x01h: Identity

Class attributes

Attribute ID	Name	Zugriff	Beschreibung	Datentyp
1	Revision	Get	Revision dieses Objekts	UINT
2	Max. Instance	Get	Maximale Instanznummer eines Objekts, das derzeit in dieser Geräte-Klassenstufe erstellt wird	UINT
3	Number of Instances	Get	Die Anzahl der aktuell erstellten Instanzen dieser Klasse	UINT
6	Maximum ID Number Class Attributes	Get	Die Attribut-ID-Nummer des letzten Klassenattributs der im Gerät implementierten Klassendefinition.	UINT
7	Maximum ID Number Instance Attributes	Get	Die Attribut-ID-Nummer des letzten Instanzattributs der im Gerät implementierten Klassendefinition.	UINT

Instance attributes

Attribute ID	Name	Zugriff	Beschreibung	Datentyp
1	Vendor ID	Get	Hersteller-Identifikation	UINT8
2	Device Type	Get	Angabe der allgemeinen Produktart	UINT16
3	Product Code	Get	Identifizierung eines bestimmten Produkts eines einzel- nen Anbieters	UINT16
4	Revision	Get	Revision des Produkts	UINT16
5	Status	Get	Zusammenfassender Gerätestatus	UINT16
6	Serial Number	Get	Seriennummer des Geräts	UINT32
7	Product Name	Get	Von Menschen lesbare Identifikation	CHAR
8	State	Get	Aktueller Zustand des Geräts	UINT8

Services

Service	Name	Zu	griff	Beschreibung
Code		Class level	Instance level	
0x01	Get Attribute All	Yes	Yes	Alle Attributwerte abrufen
0x05	Reset	Yes	Yes	Gerät zurücksetzen
0x4B	Flash LEDs	No	Yes	Blinken der Geräte-LEDs zur Identifizie- rung
0x0E	Get Attribute Single	Yes	Yes	Attributwert abrufen
0x10	Set Attribute Single	Yes	Yes	Attributwert ändern

Sie können den Sensor über den Service Reset (0x05 hex) der Instanz 1 oder direkt über die Klasse des Identity-Objekts (0x01 hex) auf Werksteinstellungen zurücksetzen. Der Reset-Service beinhaltet den Parameter Reset Type vom Datentyp USINT, für den folgende Werte gültig sind:

- 0 Führt einen Power Cycle durch
- 1 Setzt den Sensor auf Werksteinstellungen zurück und führt anschließend einen Power Cycle durch

Nach Rücksetzen des Sensors auf Werkseinstellungen ist dieser auf DHCP konfiguriert.

1

8.4.1.3 Object 0x04 Assembly

Class Attributes

Attribute ID	Name	Zugriff	Beschreibung	Datentyp
1	Revision	Get	Revision dieses Objekts	UINT
2	Max. Instance	Get	Maximale Instanznummer eines Objekts, das derzeit in dieser Geräte-Klassenstufe erstellt wird	UINT
3	Number of Instances	Get	Die Anzahl der aktuell erstellten Instanzen dieser Klasse	UINT
6	Maximum ID Number Class Attributes	Get	Die Attribut-ID-Nummer des letzten Klassenattributs der im Gerät implementierten Klassendefinition.	UINT
7	Maximum ID Number Instance Attri- butes	Get	Die Attribut-ID-Nummer des letzten Instanzattributs der im Gerät implementierten Klassendefinition.	UINT

Instance attributes

Attribute ID	Name	Zugriff	Beschreibung	Data type
3	Assembly Object Data	Get/Set	Aktuelle Prozessdaten	Array of OCTET
4	Assembly Object Size	Get	Größe der Prozessdaten in Anzahl Bytes	UINT16

Die Attribute 1 und 2 sind für Konfigurations-Assembly-Instanzen nicht verfügbar.

Services

Service Name Zugriff		Beschreibung		
Code		Class level	Instance level	
0x0E	Get Attribute Single	Yes	Yes	Attributwert abrufen
0x10	Set Attribute Single	No	Yes	Attributwert ändern
0x18	Get Member	No	Yes	Holt ein Member des Instanzattributs 2

8.4.1.4 Object 0xF5 TCP/IP Interface

Class Attributes

Attribute ID	Name	Zugriff	Beschreibung	Datentyp
1	Revision	Get	Revision dieses Objekts	UINT
2	Max. Instance	Get	Maximale Instanznummer eines Objekts, das derzeit in dieser Geräte-Klassenstufe erstellt wird	UINT
3	Number of Instances	Get	Die Anzahl der aktuell erstellten Instanzen dieser Klasse	UINT
6	Maximum ID Number Class Attri- butes	Get	Die Attribut-ID-Nummer des letzten Klassenattributs der im Gerät implementierten Klassendefinition.	UINT
7	Maximum ID Number Instance Attributes	Get	Die Attribut-ID-Nummer des letzten Instanzattributs der im Gerät implementierten Klassendefinition.	UINT

Instance Attributes

Attribute ID	Name	Zugriff	Beschreibung	Datentyp
1	Status	Get	Status der Schnittstelle	DWORD
2	Configuration Capa- bility	Get	Schnittstellen-Fähigkeit Flags	DWORD
3	Configuration Control	Set	Schnittstellen-Steuerung Flags	DWORD
4	Physical Link Object	Get	Pfad zum physischen Link-Objekt	STRUCT ¹
5	TCP/IP Interface Con- figuration	Get/Set	Schnittstellenkonfiguration (IP-Adresse, Subnetzmas- ke, Gateway-Adresse usw.)	STRUCT ¹
6	Host Name	Get/Set	Das Attribut Hostname enthält den Hostnamen des Geräts, der zu Informationszwecken verwendet wer- den kann.	STRING
8	TTL Value	Get/Set	TTL-Wert für EtherNet/IP-Multicast-Pakete	USINT
9	Mcast Config	Get/Set	IP-Multicast-Adresse Konfiguration	STRUCT ¹
10	SelectAcd	Get/Set	Aktiviert die Verwendung von ACD	BOOL
11	LastConflictDetected	Get/Set	Struktur mit Informationen über den letzten festgestell- ten Konflikt	STRUCT ¹
13	Encapsulation Inactiv- ity Timeout	Get/Set	Anzahl der Sekunden, bis die TCP-Verbindung bei Inaktivität der Kapselung geschlossen wird	UINT
14	IANA Port Admin	Get	IANA-Port-Verwaltungskonfiguration	STRUCT 1

Weisen Sie über DHCP dem Sensor eine IP-Adresse zu. Über das Attribut 3 der Instanz 1 der TCP/IP-Klasse (0xF5 hex) können Sie zwischen DHCP, BOOTP und statischer IP-Adresse wählen.

Das Attribut 3 hat den Datentyp DWORD (Bit string – 32 bits). Die einzelnen Bits haben folgende Bedeutung:

Bits	Name	Beschreibung
0-3	IP-Konfiguration	0 = Das Gerät nutzt eine statische IP-Adresse 1 = Das Gerät bezieht seine IP-Adresse über BOOTP 2 = Das Gerät bezieht seine IP-Adresse über DHCP 3-15 = Reserviert
4	DNS Enable	Wenn 1 (TRUE), soll das Gerät Hostnamen durch Abfrage eines DNS-Servers auflösen.
5-31	Reserviert	Reserviert, sollte 0 gesetzt werden.

1) Weitere Details zu den Datentypen STRUCT finden Sie in der THE CIP NETWORKS LIBRARY, Volume 2.

Sie können die IP-Adresse und die Netzwerkmaske über das Attribut 5 der Instanz 1 der TCP/IP-Klasse (0xF5) ändern.

Name	Datentyp	Beschreibung	Werte
IP-Adresse	UDINT	IP-Adresse des Sensors	Ein Wert von 0 bedeutet, dass keine IP-Adresse konfi- guriert wurde. Andernfalls sollte die IP Adresse auf eine gültige Adresse der Klasse A, B oder C gesetzt werden. Die IP-Adresse darf wird nicht auf die Loopback-Adresse (127.0.0.1) gesetzt werden.
Netzwerkmaske	UDINT	Netzwerkmaske des Sensors	Ein Wert von 0 bedeutet, dass keine Netzwerkmaske konfiguriert wurde.
Gateway	UDINT	Gateway-IP-Adresse des Sensors	Ein Wert von 0 bedeutet, dass keine IP-Adresse konfi- guriert wurde. Andernfalls sollte die IP Adresse auf eine gültige Adresse der Klasse A, B oder C gesetzt werden. Die IP-Adresse darf wird nicht auf die Loopback-Adresse (127.0.0.1) gesetzt werden.
Name Server	UDINT	Primary Name Server	Ein Wert von 0 bedeutet, dass keine Name-Server-Adres- se konfiguriert wurde. Die Name-Server-Adresse sollte eine Adresse der Klasse A, B oder C sein.
Name Server 2	UDINT	Secondary Name Server	Ein Wert von 0 bedeutet, dass keine Name-Server-Adres- se konfiguriert wurde. Die Name-Server-Adresse sollte eine Adresse der Klasse A, B oder C sein.
Domänenname	STRING	Standard-Domänenname	Die maximale Länge beträgt 48 ASCII-Zeichen. Es muss auf eine gerade Anzahl von Zeichen aufgefüllt werden (Auffüllung nicht in der Länge enthalten). Eine Länge von 0 bedeutet, dass kein Domänenname konfiguriert ist.

Attribut 5 ist eine Struktur, die sich aus folgenden Datentypen zusammensetzt:

Attribut 3 und Attribut 5 werden remanent im Sensor gespeichert.

Services

Service	Name	Zugriff		Beschreibung
Code		Class level	Instance level	
0x01	Get Attribute All	No	Yes	Gibt den Inhalt von Instanz- oder Klassen- attributen zurück
0x0E	Get Attribute Single	Yes	Yes	Attributwert abrufen
0x10	Set Attribute Single	No	Yes	Attributwert ändern

8.4.1.5 Object 0x43 Time Sync

Class Attributes

Attribute ID	Name	Zugriff	Beschreibung	Datentyp
1	Revision	Get	Revision dieses Objekts	UINT
2	Max. Instance	Get	Maximale Instanznummer eines Objekts, das derzeit in dieser Geräte-Klassenstufe erstellt wird	UINT
3	Number of Instances	Get	Die Anzahl der aktuell erstellten Instanzen dieser Klasse	ULINT
6	Maximum ID Number Class Attributes	Get	Die Attribut-ID-Nummer des letzten Klassen- attributs der im Gerät implementierten Klas- sendefinition.	UINT
7	Maximum ID Number Instance Attri- butes	Get	Die Attribut-ID-Nummer des letzten Instanz- attributs der im Gerät implementierten Klas- sendefinition.	UINT

Instance Attributes

Attribute ID	Name	Zugriff	Beschreibung	Datentyp
1	PTPEnable	Get/Set	PTP aktiv	BOOL
2	IsSynchronized	Get	Local Clock wird mit dem Master synchroni- siert	BOOL
3	SystemTimeMicrosec- onds	Get	Aktueller Wert von system_time in Mikrose- kunden	UINT
4	SystemTimeNanosec- onds	Get	Aktueller Wert von system_time in Nanose- kunden	ULINT
5	OffsetFromMaster	Get	Offset zwischen Local Clock und Master Clock	LINT
6	MaxOffsetFromMaster	Get/Set	Maximaler Offset zwischen Local Clock und Master Clock seit dem letzten Zurücksetzen dieses Wertes.	ULINT
7	MeanPathDelayToMaster	Get	Mittlere Pfadverzögerung zum Master	LINT
8	GrandMasterClockInfo	Get	Grandmaster Clock Info	STRUCT ¹
9	ParentClockInfo	Get	Parent Clock Info	STRUCT ¹
10	LocalClockIno	Get	Local Clock Info	STRUCT ¹
11	NumberOfPorts	Get	Anzahl der Ports	UINT
12	PortStateInfo	Get	Port Zustand Info	STRUCT ¹
13	PortEnableCfg	Get/Set	Port aktiv kfg	STRUCT ¹
14	PortLogAnnounceInter- valCfg	Get/Set	Port log announce interval cfg	STRUCT ¹
15	PortLogSyncIntervalCfg	Get/Set	Port log sync interval cfg	STRUCT ¹
18	DomainNumber	Get/Set	Domainnummer	USINT
19	ClockType	Get	Clock Typ	WORD
20	ManufactureIdentity	Get	Hersteller Identität	USINT[4]
21	ProductDescription	Get	Produktbeschreibung	STRUCT ¹
22	RevisionData	Get	Revisionsdaten	STRUCT ¹
23	UserDescription	Get	Benutzer-Beschreibung	STRUCT ¹
24	PortProfileIdentityInfo	Get	Informationen zur Identität des Portprofils	STRUCT ¹
25	PortPhysicalAddressInfo	Get	Informationen zur physischen Adresse des Ports	STRUCT ¹
26	PortProtocolAddressInfo	Get	Port-Protokoll-Adresse Info	STRUCT ¹
27	StepsRemoved	Get	Schritte entfernt	UINT
28	SystemTimeAndOffset	Get	Systemzeit und Offset	STRUCT ¹
29	AssociatedInterfaceOb- jects	Get	Mit PTP-Ports verbundene Objekte	STRUCT ¹
768	SyncParameters	Get/ Set ²	Synchronisationsparameter	

Variable	Тур	Wert/Bereich	Beschreibung
Sync0Interval	UDINT	100.000 4.000.000 ns	Sync0 Intervall in Nano-Sekunden. Dieser Parameter gibt das Intervall des Sync 0-Signals in Nanosekunden an. Der Wert 0 bedeutet, dass das Signal ausgeschaltet ist. Der Startpunkt des Sync0-Signals ist abhängig vom Sync0-Offset (siehe Parameter Sync0Offset).
Sync0Offset	UDINT	kleiner als ulSync0Interval Default: 0	Sync 0 Offset in Nanosekunden. Dieser Parameter gibt den Offset für das Sync 0-Signal relativ zur Systemzeit (Zeit des Sync Master) an.
Sync1Interval	UDINT	0,10000 999999999 Standard: 0	Sync1 Intervall in Nanosekunden. Dieser Parameter gibt das Intervall des Sync-1-Signals in Nanosekunden an. Der Wert 0 bedeutet, dass das Signal ausgeschaltet ist. Der Startpunkt des Sync1-Signals ist abhängig vom Sync1-Offset (siehe Parameter ulSync1Offset).
Sync1Offset	UDINT	kleiner als ulSync1Interval Standard: 0	Sync 1 Offset in Nanosekunden. Dieser Parameter gibt den Offset für das Sync-1-Signal relativ zur Systemzeit (Zeit des Sync-Masters) an.
PulseLength	UDINT	1 500 und kleiner als das Minimum der Werte Sync0Inter- val und Sync1Interval, wenn sie in Mikrosekunden umgerechnet werden. Standardwert: 4 μs	Impulslänge der Signale Sync0 und Sync1 in Mikrosekunden

Details zum Object Time Sync, Attribut 768 (0x300h):

Die Sensoren arbeiten ausschließlich mit dem Sync0-Signal. Das Sync1-Signal findet keine Verwendung.

Services

Service	Name	Zugriff		Beschreibung
Code		Class level	Instance	
			level	
				Der Dienst Get_Attribute_List gibt den Inhalt der
0x03	Get Attributes List All	No	Yes	ausgewählten Attribute der angegebenen Objekt-
				klasse oder Instanz zurück
				Der Set_Attribute_List-Dienst setzt den Inhalt aus-
0x04	Set Attributes List	No	Yes	gewählter Attribute der angegebenen Objektklasse
				oder Instanz
0x0E	Get Attribute Single	Yes	Yes	Attributwert abrufen
0x10	Set Attribute Single	No	Yes	Attributwert ändern

8.4.2 Herstellerspezifische Objekte

Die herstellerspezifischen Objekte verfügen über keine Instanzen. Sie unterstützen ausschließlich die Dienste

- Get Attribute Single und
- Set Attribute Single.

Service	Name	Zugriff		Beschreibung
Code		Class level	Instance	
			level	
0x0E	Get Attribute Single	Yes	Yes	Attributwert abrufen
0x10	Set Attribute Single	Yes	Yes	Attributwert ändern

Geben Sie folgendes bei der Adressierung an:

- Class-ID,
- Attribute-ID und
- Service-Code.

Für die Instance-ID können Sie einen beliebigen Wert verwenden, da diese vom Sensor nicht geprüft wird.

Ein Übersicht zu den Objekten finden Sie im Anhang, siehe Kap. A 8

8.5 Implicit Messaging

8.5.1 Allgemein

Über Implicit Messaging sendet das IFD241x mit EtherNet/IP zyklisch Inputdaten zum EtherNet/IP-Scanner. Um Implicit Messaging zu betreiben, ist es notwendig, eine I/O-Connection zu eröffnen. I/O-Connections beinhalten sogenannte Assemblies. Ein Assembly beinhaltet ein oder mehrere Parameter, die den Aufbau der Prozessdaten spezifizieren.

Es werden bei I/O-Connections drei verschiedene Typen unterschieden:

- Input Only: Die I/O-Connection beinhaltet nur Input-Prozessdaten
- Listen Only: Die I/O-Connection beinhaltet nur Input-Prozessdaten
- Exclusive Owner: Die I/O-Connection beinhaltet Input- und Output-Prozessdaten

Eine I/O-Connection vom Typ Listen Only kann nur aufgebaut werden, wenn bereits eine I/O-Connection vom Typ Input Only mit den gleichen Assemblies aufgebaut wurde. So können mehrere Teilnehmer nach dem Producer/Consumer-Modell von einem Adapter Input-Prozessdaten empfangen.

Da das IFD241x mit EtherNet/IP nur über Input-Prozessdaten verfügt, besitzt das IFD241x mit EtherNet/IP keine I/O-Connections vom Typ Exclusive Owner.

Eine I/O-Connection kann bis zu 4 verschiedene Assemblies enthalten. Grundsätzlich wird zwischen Input-, Outputund Configuration-Assemblies unterschieden. Während Input- und Output-Assemblies für den dauerhaften zyklischen Prozessdatenaustausch vorgesehen sind, werden die Daten eines Configuration-Assemblies einmalig beim Aufbau der I/O-Connection versendet.

- Input-Assembly: Zyklische Prozessdaten, Adapter > Scanner
- Output-Assembly: Zyklische Prozessdaten, Scanner > Adapter
- Input-Configuration-Assembly: Einmalige Daten beim Aufbau der Connection, Adapter > Scanner
- Output-Configuration-Assembly: Einmalige Daten beim Aufbau der Connection, Scanner > Adapter

Name	Größe des Input-Assemblies in Bytes	Тур
Fixed OV1 Input Only	24	Input Only
Fixed OV1 Listen Only	24	Listen Only
Mappable Input Only	0 - 500	Input Only
Mappable Listen Only	0 - 500	Listen Only

Das IFD241x mit EtherNet/IP stellt vier verschiedene I/O-Connections zur Verfügung:

8.5.2 I/O-Connection Fixed OV1 Input Only

Diese I/O-Connection verfügt nur über ein Input-Assembly mit einer festen Größe von 36 Byte. Es werden alle im Sensor verfügbaren Input-Prozessdaten bei einem Oversampling von 1 übertragen. Die I/O-Connection beinhaltet keine Outputoder Configuration-Assemblies. Die Prozessdaten sind wie folgt aufgebaut:

Bytes	Name Messwert	Beschreibung
0 - 3	Channel 1 distance 1	Abstand
4 – 7	Channel 1 intensity 1	Intensität
8 - 11	Channel 1 shutter	Belichtungszeit
12 - 15	Counter	Messwertzähler
16 - 19	Time stamp	Zeitstempel
20 - 23	Frequency	Messfrequenz

Frage: //Wie darstellen, Anzahl der Ausgabewerte hängt doch vom Sensormodell ab?

8.5.3 I/O-Connection Fixed OV1 Listen Only

Diese I/O-Connection entspricht von ihrem Aufbau der Input-Prozessdaten der I/O-Connection Fixed OV1 Input Only. Der Unterschied ist, dass sie diese I/O-Connection nur nutzen können, wenn die Fixed OV1 Input Only I/O-Connection bereits besteht.

8.5.4 I/O-Connection Mappable Input Only

Die I/O-Connection enthält ein Input-Assembly und ein Input-Configuration-Assembly. Das Input-Assembly besitzt eine variable Größe, die von den gemappten Input-Prozessdaten abhängt. Anders als bei Fixed OV1 Input Only, können sie den Inhalt des Input-Assemblies individuell konfigurieren. Diese Vorgehensweise wird als Mapping bezeichnet.

Sie haben zwei Möglichkeiten, das Mapping zu konfigurieren:

- Configuration-Assembly der I/O-Connection oder
- Mapping-Objekt 0xC0.

Das Configuration-Assembly ist wie folgt aufgebaut:

Bvte	Name	Default	Min	Max	Beschreibung	Prozessdaten-
						Größe in Bytes
0	Activation	0	0	1	Wenn Sie diesen Wert auf 0 setzen, wird der Sensor die Daten im Configuration-Assembly ignorieren und stattdessen das zuletzt konfigurierte Mapping im Mapping-Objekt 0xC0 verwenden. Wenn Sie diesen Wert auf 1 setzen, wird der Sensor anhand der über- mittelten Daten des Configuration-Assemblies das Mapping im Mapping-Objekt 0xC0 überschreiben und diese Konfiguration verwenden.	
1	Oversampling	1	1	8	Wählen Sie einen Oversampling-Faktor zwischen 1 und 8 aus. Die Prozessdatengröße ergibt sich anschließend aus dem Mapping multipliziert mit dem Oversampling-Faktor.	
2	Mappings: Channel 1 distance 1	1	0	1		4
3	Mappings: Channel 1 distance 2	1	0	1		4
4	Mappings: Channel 1 intensity 1	1	0	1		4
5	Mappings: Channel 1 intensity 2	1	0	1		4
6	Mappings: Channel 1 shutter	1	0	1		4
7	Mappings: Channel 1 encoder 1	1	0	1		4
8	Mappings: Channel 1 encoder 2	1	0	1		4
9	Mappings: Channel 1 encoder 3	1	0	1		4
10	Mappings: Counter	1	0	1		4
11	Mappings: Time stamp	1	0	1		4
12	Mappings: Frequency	1	0	1		4
13	Mappings: User calc output 01	1	0	1		4
14	Mappings: User calc output 02	1	0	1		4
15	Mappings: User calc output 03	1	0	1		4
16	Mappings: User calc output 04	1	0	1	0 = Prozessdaten werden nicht gemapped	4
17	Mappings: User calc output 05	1	0	1	1 = Prozessdaten werden gemapped	4
18	Mappings: User calc output 06	1	0	1		4
19	Mappings: User calc output 07	1	0	1		4
20	Mappings: User calc output 08	1	0	1		4
21	Mappings: User calc output 09	1	0	1		4
22	Mappings: User calc output 10	1	0	1		4
23	Mappings: User calc output 11	1	0	1		4
24	Mappings: User calc output 12	1	0	1		4
25	Mappings: User calc output 13	1	0	1		4
26	Mappings: User calc output 14	1	0	1		4
27	Mappings: User calc output 15	1	0	1		4
28	Mappings: User calc output 16	1	0	1		4
29	Mappings: User calc output 17	1	0	1		4
30	Mappings: User calc output 18	1	0	1		4
31	Mappings: User calc output 19	1	0	1		4

Abb. 77 Configuration-Assembly IFD2410

						Prozoadaton
Byte	Name	Default	Min	Max	Beschreibung	Größe in Bytes
					Wenn Sie diesen Wert auf 0 setzen, wird der Sensor	
					die Daten im Configuration-Assembly ignorieren und	
					stattdessen das zuletzt konfigurierte Mapping im	
					Mapping-Objekt 0xC0 verwenden. Wenn Sie diesen	
0	Activation	0	0	1	Wert auf 1 setzen, wird der Sensor anhand der über-	
					mittelten Daten des Configuration-Assemblies das	
					Mapping im Mapping-Objekt 0xC0 überschreiben	
					und diese Konfiguration verwenden.	
					Wählen Sie einen Oversampling-Faktor zwischen	
1	Oversampling	1	1	8	1 und 8 aus. Die Prozessdatengröße ergibt sich	
	e vereampning		'		anschließend aus dem Mapping multipliziert mit dem	
			ļ		Oversampling-Faktor.	
2	Mappings: Channel 1 distance 1	1	0	1	-	4
3	Mappings: Channel 1 distance 2	1	0	1	-	4
4	Mappings: Channel 1 intensity 1	1	0	1	-	4
5	Mappings: Channel 1 intensity 2	1	0	1	-	4
6	Mappings: Channel 1 shutter	1	0	1	-	4
7	Mappings: Channel 1 encoder 1	1	0	1	-	4
8	Mappings: Channel 1 encoder 2	0	0	1	-	4
9	Mappings: Channel 1 encoder 3	0	0	1	-	4
10	Mappings: Counter	0	0	1	-	4
11	Mappings: Time stamp	0	0	1	-	4
12	Mappings: Frequency	0	0	1	-	4
13	Mappings: User calc output 01	0	0	1	-	4
14	Mappings: User calc output 02	0	0	1	-	4
15	Mappings: User calc output 03	0	0	1	-	4
16	Mappings: User calc output 04	0	0	1	0 = Prozessdaten werden nicht gemapped	4
17	Mappings: User calc output 05	0	0	1	1 = Prozessdaten werden gemapped	4
18	Mappings: User calc output 06	0	0	1	-	4
19	Mappings: User calc output 07	0	0	1		4
20	Mappings: User calc output 08	0	0	1	-	4
21	Mappings: User calc output 09	0	0	1	-	4
22	Mappings: User calc output 10	0	0	1	-	4
23	Mappings: User calc output 11	0	0	1	-	4
24	Mappings: User calc output 12	0	0	1	-	4
25	Mappings: User calc output 13	0	0	1	-	4
26	Mappings: User calc output 14	0	0	1	-	4
27	Mappings: User calc output 15	0	0	1		4
28	Mappings: User calc output 16	0	0	1		4
29	Mappings: User calc output 17	0	0	1		4
30	Mappings: User calc output 18	0	0	1		4
31	Mappings: User calc output 19	0	0	1		4

Abb. 78 Configuration-Assembly IFD2411

Byte	Name	Default	Min	Мах	Beschreibung	Prozessdaten- Größe in Bytes
0	Activation	0	0	1	Wenn Sie diesen Wert auf 0 setzen, wird der Sensor die Daten im Configuration-Assembly ignorieren und stattdessen das zuletzt kon- figurierte Mapping im Mapping-Objekt 0xC0 verwenden. Wenn Sie diesen Wert auf 1 setzen, wird der Sensor anhand der übermittelten Daten des Configuration-Assemblies das Mapping im Mapping-Objekt 0xC0 überschreiben und diese Konfiguration verwenden.	
1	Oversampling	1	1	25	Wählen Sie einen Oversampling-Faktor zwi- schen 1 und 25 aus. Die Prozessdatengröße ergibt sich anschließend aus dem Mapping multipliziert mit dem Oversampling-Faktor.	
2	Mappings: Channel 1 distance 1	1	0	1	"0 = Prozessdaten werden nicht gemapped 1 = Prozessdaten werden gemapped"	4
3	Mappings: Channel 1 distance 2	1	0	1		4
4	Mappings: Channel 1 distance 3	1	0	1		4
5	Mappings: Channel 1 distance 4	1	0	1		4
6	Mappings: Channel 1 distance 5	1	0	1		4
7	Mappings: Channel 1 distance 6	1	0	1		4
8	Mappings: Channel 1 intensity 1	0	0	1		4
9	Mappings: Channel 1 intensity 2	0	0	1		4
10	Mappings: Channel 1 intensity 3	0	0	1		4
11	Mappings: Channel 1 intensity 4	0	0	1		4
12	Mappings: Channel 1 intensity 5	0	0	1		4
13	Mappings: Channel 1 intensity 6	0	0	1		4
14	Mappings: Channel 1 shutter	0	0	1		4
15	Mappings: Channel 1 peak symmetry 1	0	0	1		4
16	Mappings: Channel 1 peak symmetry 2	0	0	1		4
17	Mappings: Channel 1 peak symmetry 3	0	0	1		4
18	Mappings: Channel 1 peak symmetry 4	0	0	1		4
19	Mappings: Channel 1 peak symmetry 5	0	0	1		4
20	Mappings: Channel 1 peak symmetry 6	0	0	1		4
21	Mappings: Channel 1 encoder 1	0	0	1		4
22	Mappings: Channel 1 encoder 2	0	0	1		4
23	Mappings: Channel 1 encoder 3	0	0	1		4
24	Mappings: Counter	0	0	1		4
25	Mappings: Time stamp	0	0	1		4
26	Mappings: Frequency	0	0	1		4
27	Mappings: User calc output 01	0	0	1		4
28	Mappings: User calc output 02	0	0	1		4
29	Mappings: User calc output 03	0	0	1		4
30	Manufacture Line and Control of C	0	0	1		4
31	Mappings: User calc output 05	0	0	1		4
32	Mappings: User calc output 06	0	0	1		4
33	Mappings: User calc output 0/	0	0	1		4
34	Mappings: User calc output 08	0	0	1		4
	Mappings: User calc output n	0	0	1		4
42	Mappings: User calc output 16	0	0	4		4
43	Mappings: User calc output 17	0	0	-		4
44		0	0	1		4
40	wappings. User care output 19	U	U			4

Abb. 79 Configuration-Assembly IFD2415

Wenn es ihre SPS-Software unterstützt, können die Werte für das Configuration-Assembly dauerhaft in ihrem SPS-Projekt gespeichert werden, so dass bei jeder Inbetriebnahme das Mapping neu übermittelt wird.

Wenn sie das Mapping über das Configuration-Asembly konfigurieren, müssen sie die Größe des Input-Assembly entsprechend anpassen. Die Größe des Input-Assemblies berechnet sich wie folgt:

Größe des Input-Assembly = (Mappinggröße 0 + Mappinggröße 1 + ... + Mappinggröße n) * Oversampling

Beispiel mit IFD2410: Abstand 1/2, Messwertzähler und Zeitstempel werden bei einem Oversampling von 2 gemappt.

Byte	Name	Wert	Prozessdaten-Größe in Bytes
0	Activation	1	
1	Oversampling	2	
2	Mappings: Channel 1 distance 1	1	4
3	Mappings: Channel 1 distance 2	1	4
4	Mappings: Channel 1 intensity 1	0	4
5	Mappings: Channel 1 intensity 2	0	4
6	Mappings: Channel 1 shutter	0	4
7	Mappings: Channel 1 encoder 1	0	4
8	Mappings: Channel 1 encoder 2	0	4
9	Mappings: Channel 1 encoder 3	0	4
10	Mappings: Counter	1	4
11	Mappings: Time stamp	1	4
12	Mappings: Frequency	0	4
13	Mappings: User calc output 01	0	4
14	Mappings: User calc output 02	0	4
15	Mappings: User calc output 03	0	4
16	Mappings: User calc output 04	0	4
17	Mappings: User calc output 05	0	4
18	Mappings: User calc output 06	0	4
19	Mappings: User calc output 07	0	4
20	Mappings: User calc output 08	0	4
21	Mappings: User calc output 09	0	4
22	Mappings: User calc output 10	0	4
23	Mappings: User calc output 11	0	4
24	Mappings: User calc output 12	0	4
25	Mappings: User calc output 13	0	4
26	Mappings: User calc output 14	0	4
27	Mappings: User calc output 15	0	4
28	Mappings: User calc output 16	0	4
29	Mappings: User calc output 17	0	4
30	Mappings: User calc output 18	0	4
31	Mappings: User calc output 19	0	4

Größe des Input-Assembly = (4 Byte + 4 Byte + 4 Byte + 4 Byte) * 2 = 32 Byte

Alternativ zum Configuration-Assembly können sie das Mapping über das Mapping-Objekt 0xC0 konfigurieren. In die sem Objekt finden Sie die gleichen Mappings sowie das Oversampling wieder.

8.5.5 I/O-Connection Mappable Listen Only

Diese I/O-Connection entspricht von ihrem Aufbau der Input-Prozessdaten der I/O-Connection Mappable Input Only. Der Unterschied ist, dass sie diese I/O-Connection nur nutzen können, wenn die Mappable Input Only I/O-Connection bereits besteht.

8.6 Gerätebeschreibungsdatei EDS

Sie müssen die zum Gerät zugehörige EDS-Datei (Electronic Data Sheet) in ihre SPS-Software einbinden, um das IFD241x mit EtherNet/IP zu betreiben. Jedes Gerät ist eindeutig durch die Vendor-ID, den Product-Code und die Majorund Minor-Revision bestimmt. Sie finden diese Angaben in Ihrer *.eds-Datei. Stellen Sie sicher, dass die *.eds-Datei zur Revision ihres Geräts passt.

Sie können die Revision über das Attribut 4 der Instanz 1 des Identity-Objekts (0x01) aus dem Gerät auslesen.

8.7 Oversampling

Beim IFD241x mit EtherNet/IP wird das Oversampling global über das Assembly-Objekt 0x0004 eingestellt. Das IFD2410 und IFD2411 unterstützen ein Oversampling von 1 bis 8, das IFD2415 ein Oversampling von 1 bis 25.

Im Betrieb ohne Oversampling wird mit jedem Feldbuszyklus der letzte angefallene Messwertdatensatz zum EtherNet/IP-Adapter übertragen. Für große Feldbuszykluszeiten stehen somit evtl. Messwertdatensätze nicht zur Verfügung. Mit dem konfigurierbarem Oversampling werden alle (oder auswählbare) Messwertdatensätze gesammelt und beim nächsten Feldbuszyklus gemeinsam zum Adapter (IO-Scanner??) übertragen. Generell hängt ein mögliches Oversampling vom Verhältnis Messrate Messsystem zu Feldbuszykluszeit ab.

Der Oversampling-Faktor gibt an, wie viele Samples pro Buszyklus übertragen werden. Ein Oversampling-Faktor von z. B. 2 bedeutet, dass pro Buszyklus 2 Samples übertragen werden.

Um aufgrund der Asynchronität zwischen Masterzyklus und Slavezyklus sicherzustellen, dass keine Samples verloren gehen, sollte die Masterzykluszeit immer kleiner als die Zeit für das Zusammenstellen eines Blockes aus n Samples sein.

Ein ganzer Block wird mit den angegebenen Samples erst der Adapter-Seite zur Verfügung gestellt, nachdem alle angegebenen Samples in den Block geschrieben wurden. Ist die Zeit für das Füllen eines Blockes kürzer als die Masterzykluszeit, werden einzelne Blöcke nicht übertragen. Es kann nämlich vorkommen, dass bereits der nächste Block mit Samples gefüllt wird, bevor mit einem Masterzyklus der bereits vorher gefüllte Block abgeholt wird.

Wird die Anzahl der Samples dagegen so groß gewählt, dass die Zeit für das Füllen eines Blockes größer als die Masterzykluszeit wird, wird jeder Block durch einen Masterzyklus abgeholt. Allerdings werden einzelne Blöcke (und somit Samples) doppelt oder mehrfach übertragen. Das kann durch Übertragen des Timestamp oder Valuecounter auf der Adapter-Seite detektiert werden.

8.8 IP-Adresse Sensor unbekannt

Wenn ihnen die IP-Adresse des Sensors nicht bekannt ist, weil ihr DHCP/BOOTP-Server die Adresse nicht anzeigt oder weil sie die statische IP-Adresse vergessen haben, können sie den Sensor trotzdem über einen CIP List Identity Request finden. Ein CIP List Identity Request wird als Broadcast über UPD oder TCP versendet.

Der Sensor wird ihnen dann als Unicast auf seiner IP-Adresse antworten. Schauen Sie nach, inwiefern ihre SPS-Software den List Identity Request unterstützt. Ein Tool, das den List Identity Request auch unterstützt, ist z. B. das EtherNet/IP-Tool von Molex.

8.9 **IP-Konfiguration**

Der Sensor wird im DHCP-Betrieb ausgeliefert. Sie brauchen einen DHCP-Server, um dem Sensor eine IP-Adresse zuzuweisen. Erst wenn der Sensor über eine gültige IP-Adresse verfügt ist Implicit und Explicit Messaging möglich.

8.10 Synchronisation von Sensoren

8.10.1 Allgemein

Messen mit der Sync0-Frequenz der SPS anstatt der internen Messrate

Ein Sensor arbeitet mit der internen Messrate. Darüber hinaus besteht die Möglichkeit, den Sensor mit der Synco-Frequenz aus dem Time-Sync-Objekt messen zu lassen, um Jitter zu reduzieren.

Vorgehensweise:

- Verwenden Sie das Objekt 0x43 Time Sync.
- Setzen Sie das Instance-Attribute 1 (PTPEnable, 0x1h) auf 1 (=enabled).
- Setzen Sie die Werte für das Instance-Attribute 768 (SyncParameters, 0x300h).
- Beachten sie, dass der Sensor nur mit dem Sync0-Signal arbeitet. Das Sync1-Signal findet keine Verwen-
- l dung. Sie können daher SynclInterval und SynclOffset auf 0 setzen. Bei der Impulslänge empfehlen wir den Standardwert von 4 µs beizubehalten.

Wenn PTPEnable auf 0 (disabled) gesetzt ist, dann müssen sie PTPEnable entweder vor oder nach der Konfiguration des Attributs SyncParameters auf 1 (enabled) setzen.

Wenn sie mit der internen Messrate im Sensor anstatt der Sync0-Frequenz messen wollen, müssen sie entweder das Attribut

PTPEnable auf 0 (Disabled) oder die Sync0-Frequenz im Attribut SyncParameters auf 0 setzen.

8.10.2 Gleichzeitige Synchronisation

Alle Sensoren messen zum selben Zeitpunkt.

Beispiel: Die Sensoren sollen mit einer Messrate von 2 kHz messen.

Vorgehensweise:

- Setzen Sie das Instance-Attribute 1 (PTPEnable, 0x1h) auf 1 (=enabled) mit dem Service Set Attribute Single (0x10).
- Setzen Sie die Werte f
 ür das Instance-Attribute 768 (SyncParameters, 0x300h) in allen Sensoren mit dem Service Set Attribute Single (0x10).

Variable	Туре	Value/Range
Sync0Interval	UDINT	500.000 ns
Sync0Offset	UDINT	0 ns
PulseLength	UDINT	Default value: 4 μ s

//Hat sich hier ein Fehler eingeschlichen?

2 kHz Messrate entsprechen 5.000 ns!?

9. Fehler, Reparatur

9.1 Kommunikation Webinterface

Wenn eine Fehlerseite im Webbrowser angezeigt wird, prüfen sie bitte folgende Punkte.

- Prüfung des korrekten Anschlusses des Controllers, siehe Kap. 5.1.
- Prüfung der IP-Konfiguration von PC und Controller, Auffinden des Controllers mit dem Programm sensorTOOL, siehe Kap. 5.1.

Bei direkter Verbindung von Controller und PC kann die Vereinbarung der IP-Adressen bis zu zwei Minuten dauern.

- Prüfung der verwendeten Proxy-Einstellungen. Wenn der Controller über eine separate Netzwerkkarte mit dem PC verbunden ist, dann ist es erforderlich, die Verwendung eines Proxy-Servers für diese Verbindung zu deaktivieren. Bitte fragen Sie dazu Ihren Netzwerkverantwortlichen oder Administrator!

9.2 Wechsel des Sensorkabels an den Sensoren

- Lösen Sie die Schutzhülse am Sensor. Entfernen Sie das defekte Sensorkabel.
- Führen Sie das neue Sensorkabel durch die Schutzhülse.
- Entfernen Sie die Schutzkappe am Sensorkabel und bewahren Sie diese auf.
- Führen Sie die Führungsnase des Sensorsteckers in die Nut der Buchse.
- Verschrauben Sie Sensorstecker und Sensorbuchse.
- Schrauben Sie die Schutzhülse wieder auf den Sensor.

Führen Sie eine Dunkelkorrektur durch, siehe Kap. 5.10.

9.3 Wechsel der Schutzscheibe an den Sensoren

Ein Wechsel der Schutzscheibe ist erforderlich bei

- irreversibler Verschmutzung,
- Kratzer.
- Ohne Schutzscheibe darf der Sensor nicht verwendet werden, da sich dadurch die Messgenauigkeit verschlechtert.

Lösen Sie die vordere Fassung inkl. Schutzscheibe am Sensor.

- Entnehmen Sie die Dichtung und legen Sie den O-Ring in die Fassungsnut der neuen Schutzscheibe ein.
- Schrauben Sie die neue Fassung inkl. Schutzscheibe wieder auf den Sensor.

10. Softwareunterstützung mit MEDAQLib

Mit MEDAQLib steht Ihnen eine dokumentierte Treiber-DLL zur Verfügung. Damit binden Sie das konfokale Messsystem in eine bestehende oder kundeneigene PC-Software ein.

Verbindungsmöglichkeiten:

- RS422/USB-Konverter (optionales Zubehör) und passendes Anschlusskabel PC2415-x/OE für IFD2410/2415 oder SC2415-x/OE für IFC2411.

Um den Controller ansprechen zu können, ist kein Wissen über das unterliegende Protokoll des jeweiligen Controllers notwendig. Die einzelnen Kommandos und Parameter für den anzusprechenden Controller werden über eine abstrakte Funktionen gesetzt, und von der MEDAQLib entsprechend in das Protokoll des Controllers umgesetzt.

MEDAQLib

- enthält eine DLL, die in C, C++, VB, Delphi und viele weitere Programme importiert werden kann,
- nimmt Ihnen die Datenkonvertierung ab,
- funktioniert unabhängig vom verwendeten Schnittstellentyp,
- zeichnet sich durch gleiche Funktionen für die Kommunikation (Befehle) aus,
- bietet ein einheitliches Übertragungsformat für alle Sensoren von MICRO-EPSILON.

Für C/C++-Programmierer ist in MEDAQLib eine zusätzliche Header-Datei und eine Library-Datei integriert.

Die aktuelle Treiberroutine inklusive Dokumentation finden Sie unter:

www.micro-epsilon.de/download www.micro-epsilon.de/link/software/medaqlib

11. Haftungsausschluss

Alle Komponenten des Gerätes wurden im Werk auf die Funktionsfähigkeit hin überprüft und getestet. Sollten jedoch trotz sorgfältiger Qualitätskontrolle Fehler auftreten, so sind diese umgehend an MICRO-EPSILON oder den Händler zu melden.

MICRO-EPSILON übernimmt keinerlei Haftung für Schäden, Verluste oder Kosten, die z.B. durch

- Nichtbeachtung dieser Anleitung / dieses Handbuches,

- Nicht bestimmungsgemäße Verwendung oder durch unsachgemäße Behandlung (insbesondere durch unsachgemäße Montage, - Inbetriebnahme, - Bedienung und - Wartung) des Produktes,

- Reparaturen oder Veränderungen durch Dritte,

- Gewalteinwirkung oder sonstige Handlungen von nicht qualifizierten Personen

am Produkt entstehen, entstanden sind oder in irgendeiner Weise damit zusammenhängen, insbesondere Folgeschäden.

Diese Haftungsbeschränkung gilt auch bei Defekten, die sich aus normaler Abnutzung (z. B. an Verschleißteilen) ergeben, sowie bei Nichteinhaltung der vorgegebenen Wartungsintervalle (sofern zutreffend).

Für Reparaturen ist ausschließlich MICRO-EPSILON zuständig. Es ist nicht gestattet, eigenmächtige bauliche und/oder technische Veränderungen oder Umbauten am Produkt vorzunehmen. Im Interesse der Weiterentwicklung behält sich MICRO-EPSILON das Recht auf Konstruktionsänderungen vor.

Im Übrigen gelten die Allgemeinen Verkaufsbedingungen der MICRO-EPSILON, die unter Impressum | Micro-Epsilon https://www.micro-epsilon.de/impressum/ abgerufen werden können.

12. Service, Reparatur

Bei einem Defekt am Messsystem:

- Speichern Sie nach Möglichkeit die aktuellen Einstellungen in der SPS, nicht im Sensor/Controller. Mit Hochfahren der SPS verteilt diese die Einstellungen wieder an den Sensor/ Controller.
- Senden Sie bitte die betreffenden Teile zur Reparatur oder zum Austausch ein.

Bei Störungen, deren Ursachen nicht eindeutig erkennbar sind, senden Sie bitte immer das gesamte Messsystem inkl. Kabel an

MICRO-EPSILON MESSTECHNIK GmbH & Co. KG Königbacher Str. 15 94496 Ortenburg / Deutschland

Tel. +49 (0) 8542 / 168-0 Fax +49 (0) 8542 / 168-90 info@micro-epsilon.de www.micro-epsilon.de

13. Außerbetriebnahme, Entsorgung

Um zu vermeiden, dass umweltschädliche Stoffe freigesetzt werden und um die Wiederverwendung von wertvollen Rohstoffen sicherzustellen, weisen wir Sie auf folgende Regelungen und Pflichten hin:

- Sämtliche Kabel am Sensor und/oder Controller sind zu entfernen.
- Der Sensor und/oder Controller, dessen Komponenten und das Zubehör sowie die Verpackungsmaterialien sind entsprechend den landesspezifischen Abfallbehandlungs- und Entsorgungsvorschriften des jeweiligen Verwendungsgebietes zu entsorgen.
- Sie sind verpflichtet, alle einschlägigen nationalen Gesetze und Vorgaben zu beachten.

Für Deutschland / die EU gelten insbesondere nachfolgende (Entsorgungs-) Hinweise:

 Altgeräte, die mit einer durchgestrichenen Mülltonne gekennzeichnet sind, dürfen nicht in den normalen Betriebsmüll (z.B. die Restmülltonne oder die gelbe Tonne) und sind getrennt zu entsorgen. Dadurch werden Gefahren für die Umwelt durch falsche Entsorgung vermieden und es wird eine fachgerechte Verwertung der Altgeräte sichergestellt.

- Eine Liste der nationalen Gesetze und Ansprechpartner in den EU-Mitgliedsstaaten finden Sie unter r https://ec.europa.eu/environment/topics/waste-and-recycling/waste-electrical-and-electronic-equipment-weee_en. Hier besteht die Möglichkeit, sich über die jeweiligen nationalen Sammel- und Rücknahmestellen zu informieren.
- Altgeräte können zur Entsorgung auch an MICRO-EPSILON an die im Impressum unter https://www.micro-epsilon.de/ impressum/ angegebene Anschrift zurückgeschickt werden.
- Wir weisen darauf hin, dass Sie für das Löschen der messspezifischen und personenbezogenen Daten auf den zu entsorgenden Altgeräten selbst verantwortlich sind.
- Unter der Registrierungsnummer WEEE-Reg.-Nr. DE28605721 sind wir bei der Stiftung Elektro-Altgeräte Register, Nordostpark 72, 90411 Nürnberg, als Hersteller von Elektro- und/ oder Elektronikgeräten registriert.

Anhang

A 1 Optionales Zubehör, Serviceleistungen

A 1.1 Optionales Zubehör confocalDT IFD2410/2415

SC2415-x/OE	Anschlusskabel mit 17 poliger M12 Buchse und offene Enden für Analogausgang, Digital I/O und Encoder; schleppkettentauglich, Kabellänge $x = 3 m$, 6 m, 9 m oder 15 m
PC2415-x	Kabelverlängerung mit 12 poliger M12 Buchse und 12 poligen M12 Stecker für Versorgung, RS422 oder Encoder, Industrial Ethernet; schleppkettentauglich, Kabellänge $x = 3 m$, 6 m, 9 m oder 15 m
PC2415-x/OE	Anschlusskabel mit 12 poliger M12 Buchse und offene Enden, passend zu PC2415-x, Versor- gung, RS422 oder Encoder, Industrial Ethernet; schleppkettentauglich, Kabellänge $x = 3 \text{ m}, 6 \text{ m}, 9 \text{ m}$ oder 15 m
PC2415-1/Y	Versorgungs-/Schnittstellenkabel mit 12-poliger M12 Buchse; offene Enden und RJ45 Stecker, Kabellänge 1 m
IF2001/USB	Umsetzer von RS422 auf USB, Typ IF2001/USB, passend für Kabel PC2415-x/OE, inklusive Treiber, Anschlüsse: 1× Buchsenleiste 10-pol. (Kabelklemme) Typ Würth 691361100010, 1x Buchsen- leiste 6-pol. (Kabelklemme) Typ Würth 691361100006
PS2020	Netzteil für Hutschienenmontage, Eingang 230 VAC, Ausgang 24 VDC/2,5 A

A 1.2 Optionales Zubehör confocalDT IFD2411

Kabel C2401 mit FC/APC und E2000/APC Stecker

C2401-x	Lichtwellenleiter (3 m, 5 m, 10 m, kundenspezifische Länge bis 50 m)
C2401/PT-x	Lichtwellenleiter mit Schutzschlauch bei mechanischer Beanspruchung (3 m, 5 m, 10 m, kundenspezifische Länge bis zu 50 m)
C2401-x(01)	Lichtwellenleiter Faserkerndurchmesser 26 μ m (3 m, 5 m, 15 m)
C2401-x(10)	Lichtwellenleiter in schleppkettentauglicher Ausführung (3 m, 5 m, 10 m)

Montageadapter

MA2400-27	Montageadapter für Sensoren IFS2404-1 / IFS2404-3 / IFS2404-6
MA2404-12	Montageadapter für Sensoren IFS2404-2(001) / IFS2404/90-2(001)
JMA-xx	Justierbarer Montageadapter, siehe Kap. A 3

Sonstiges Zubehör

SC2415-x/OE	Anschlusskabel mit 17 poliger M12 Buchse und offene Enden für Analogausgang, Digital I/O und Encoder; schleppkettentauglich, Kabellänge $x = 3 \text{ m}, 6 \text{ m}, 9 \text{ m}$ oder 15 m
IF2001/USB	Umsetzer von RS422 auf USB, Typ IF2001/USB, passend für Kabel SC2415-x/OE, inklusive Treiber, Anschlüsse: 1× Buchsenleiste 10-pol. (Kabelklemme) Typ Würth 691361100010, 1x Buchsen- leiste 6-pol. (Kabelklemme) Typ Würth 691361100006
PS2020	Netzteil für Hutschienenmontage, Eingang 230 VAC, Ausgang 24 VDC/2,5 A

Vakuumdurchführung

C2402/Vac/KF16	Vakuumdurchführung für Lichtwellenleiter, 1 Kanal, Vakuum-Seite FC/APC, Nicht-Vakuum-Seite E2000/APC, Klemmflansch Typ KF 16
C2405/Vac/1/KF16	Vakuumdurchführung beidseitig FC/APC Buchse, 1 Kanal, Klemmflansch Typ KF 16
C2405/Vac/1/CF16	Vakuumdurchführung beidseitig FC/APC Buchse, 1 Kanal, Flansch Typ CF 16
C2405/Vac/6/CF63	Vakuumdurchführung für Lichtwellenleiter, beidseitig FC/APC Buchse, 6 Kanäle, Flansch Typ CF 63

A 1.3 Serviceleistungen

- Linearitätsprüfung und Justage Messsystem confocalDT

- Kalibrierung Messsystem confocalDT

A 2 Werkseinstellungen

A 2.1 confocalDT IFD2410/2415

Anzahl Peaks	1 Messwert, höchster Peak
Auswertebereich	Bereichsanfang entspricht 0 % Bereichsende entspricht 100 %
Belichtungsmodus	Messmodus
Benutzergruppe	Experte, Passwort "000"
Datenreduktion	inaktiv
Erkennungsschwelle	2 %
Fehlerbehandlung	Fehlerausgabe, kein Messwert
Messprogramm	Abstandsmessung, "Standard matt"
Messrate	1 kHz
Peakmodulation	50 %

RS422	921,6 kBps
Schaltausgang 1	Intensitätsfehler, Schaltpegel bei Fehler: Push Pull
Schaltausgang 2	Fehler Messbereich, Schaltpegel bei Fehler: Push Pull
Schnittstelle	EtherNet/IP
Signalverarbeitung	01DIST1, Gleitende Mittelung, 16 Werte
Synchronisation	keine Synchronisation
Tastenfunktion	Wechsel Betriebsart, Dunkelkorrektur, Werkseinstellung
Tastensperre	inaktiv
Triggermodus	kein Trigger

A 2.2 confocalDT IFD2411

Anzahl Peaks	1 Messwert, höchster Peak
Auswertebereich	Bereichsanfang entspricht 0 % Bereichsende entspricht 100 %
Belichtungsmodus	Messmodus
Benutzergruppe	Experte, Passwort "000"
Datenreduktion	inaktiv
Erkennungsschwelle	2 %
Fehlerbehandlung	Fehlerausgabe, kein Messwert
Messprogramm	Abstandsmessung, "Standard matt"
Messrate	1 kHz
Peakmodulation	50 %

RS422	921,6 kBps
Schnittstelle	EtherNet/IP
Signalverarbeitung	01DIST1, Gleitende Mittelung, 16 Werte
Synchronisation	keine Synchronisation
Tastenfunktion	Wechsel Betriebsart, Dunkelkorrektur, Werkseinstellung
Tastensperre	inaktiv
Triggermodus	kein Trigger

A 3 Justierbarer Montageadapter JMA-xx

A 3.1 Funktionen

- Unterstützt die optimale Sensorausrichtung für bestmögliche Messergebnisse
- Manueller Verstellmechanismus zur einfachen und schnellen Justage
 - Verschiebung in X/Y: ±2 mm
 - Verkippung: ±4°
- Hohe Schock und Vibrationsbeständigkeit durch Radialklemmung erlaubt Maschinenintegration
- Kompatibel mit zahlreichen Sensormodellen vom Typ confocalDT und interferoMETER

A 3.2 Sensorbefestigung, Kompatibilität

Radialklemmung für Sensoren mit

A 3.3 Montage

- Montieren Sie den Sensor im Montagering, siehe Abbildung.
- Verwenden Sie Reduzierhülsen für Sensoren mit einem Außen-ø kleiner 27 mm.
- Montieren Sie den Montageadapter mit Schrauben vom Typ M4 in Ihrer Anwendung, siehe Maßzeichnung.

 (\bigcirc)

Reduzierhülse

A 3.4 Maßzeichnung Montageadapter

A 3.5 Orthogonale Ausrichtung des Sensors

Justieren Sie bei eingeschalteter Lichtquelle den Sensor auf das Messobjekt.

Horizontale Verschiebung, ±2 mm

Verschiebung nach links:

Drehen Sie die Innensechskantschraube im Uhrzeigersinn

Verschiebung nach rechts:

Drehen Sie die Innensechskantschraube gegen den Uhrzeigersinn

Horizontale Verkippung, ±4°

Verkippung nach links:

Drehen Sie die Innensechskantschraube im Uhrzeigersinn

Verkippung nach rechts:

Drehen Sie die Innensechskantschraube gegen den Uhrzeigersinn

Verschiebung nach unten:

Drehen Sie die Innensechskantschraube im Uhrzeigersinn

Verschiebung nach oben:

Drehen Sie die Innensechskantschraube gegen den Uhrzeigersinn

Vertikale Verkippung, ±4°

Verschiebung nach unten:

Drehen Sie die Innensechskantschraube im Uhrzeigersinn

Verschiebung nach oben:

Drehen Sie die Innensechskant-schraube gegen den Uhrzeigersinn

Reinigen optischer Komponenten A4

A 4.1 Verschmutzungen

Verschmutzungen an optischen Oberflächen und Komponenten können eine Zunahme des Dunkelwertes verursachen und wirkt sich auf die Empfindlichkeit und die Genauigkeit aus. Um dies zu vermeiden, ist ein Reinigen der optischen Komponenten und Erfassung des Dunkelwertes nötig. Als Dunkelwert bezeichnet man die störenden Reflexionen an Grenzflächen entlang des optischen Signalpfades. An jeder Grenzfläche oder an jedem Materialübergang werden die Lichtwellen zu einem gewissen Anteil am Übergang reflektiert und laufen im Lichtwellenleiter zurück. Das Störsignal überlagert sich mit dem Nutzsignal und bildet eine Art Signalrauschen.

Ist das Störsignal ausreichend hoch und das Nutzsignal relativ schwach, kann das Nutzsignal nicht mehr eindeutig identifiziert werden. Das kann dazu führen, dass das Messsystem einen Dunkelwertpeak mit dem Messsignal verwechselt. Der errechnete Abstand des Messobjektes stimmt somit nicht mit dem tatsächlichen überein.

Sensorkabel E2000-Stecker

Sensor FC-Stecker

Abb. 80 Optische Grenzflächen eines konfokalen Messsystems

Führen Sie eine Dunkelkorrektur durch, siehe Kap. 5.10.

Videosignal vor Dunkelkorrektur (hoher Dunkelwert, blaue Linie)

Videosignal nach Dunkelkorrektur

Entspricht das Videosignal dem Zustand vor der Dunkelkorrektur, müssen Sie die optischen Grenzflächen innerhalb des Messsystems reinigen. Reinigen Sie die optischen Oberflächen nacheinander, um die verschmutzte Komponente herauszufinden. Die Verbesserung durch die Reinigung können Sie am Dunkelsignal des Videosignals beobachten.

Fahren Sie mit dem Abschnitt Schutzscheibe Sensor fort.

Prüfen bzw. reinigen Sie die Schutzscheibe am Sensor in regelmäßigen Intervallen abhängig von den Einsatzbedin-1 gungen. Reinigen Sie anschließend stets vom Controller ausgehend Richtung Sensor. Reinigen Sie immer beide Komponenten eines zusammengehören Paares, also Stecker und Buchse.

A 4.2 Hilfs- und Reinigungsmittel

One-Click [™] Cleaner	Isopropanol	Q-Tip, reinraumkompatibel	Druckgas, trocken und ölfrei
			DRUCKLUFT
Für Stecker bzwbuchse vom Typ FC oder E2000	Für die Schutzscheibe am Sensor	In Verbindung mit Isopropanol für Schutzscheibe am Sensor	Zum Entfernen loser Partikel

A 4.3 Schutzscheibe Sensor

Lose anhaftende Partikel

Blasen Sie lose Partikel mit trockener, ölfreier Druckluft ab. Festsitzende Partikel

Reinigen Sie die Schutzscheibe mit einem sauberen weichen, fusselfreien Tuch oder Linsenreinigungspapier und reinem Alkohol (Isopropanol).

Für Sensoren mit kleiner Schutzscheibe, z. B. für die Reihe IFS2404-2(001):

Tränken Sie einen Q-Tip in Isopropanol. Reiben Sie den Q-Tip langsam in einer kreisförmigen Bewegung auf der Schutzscheibe.

Abb. 81 Ausschnitt Schutzscheiben

Führen Sie eine Dunkelkorrektur durch.

Entspricht das Videosignal dem Zustand vor der Dunkelkorrektur, müssen Sie die Grenzflächen innerhalb des Messsystems reinigen.

Fahren Sie mit dem Abschnitt Schnittstelle Controller Sensorkabel fort.

A 4.4 Schnittstelle Controller Sensorkabel

- Stecken Sie das Sensorkabel (Lichtwellenleiter) am Controller ab.
- Entfernen Sie die Schutzkappe am One-Click[™] Cleaner.
- Stülpen Sie den One-Click™ Cleaner über den Lichtwellenleiteranschluss am Controller, siehe Abbildung.
- Drücken Sie die äußere Hülse des One-Click[™] Cleaners auf den Lichtwellenleiter bis ein Klickgeräusch das Ende der Reinigung anzeigt.

Abb. 82 One-Click™ Cleaner zum Reinigen von E2000-Lichtwellenleiterübergängen

- Stecken Sie die Schutzkappe am Controller in den Lichtwellenleiteranschluss.
- Entfernen Sie die vordere Schutzkappe am One-Click™ Cleaner.
- Stülpen Sie den One-Click[™] Cleaner über den Lichtwellenleiter, siehe Abbildung.
- Drücken Sie die äußere Hülse des One-Click[™] Cleaners auf den Lichtwellenleiter bis ein Klickgeräusch das Ende der Reinigung anzeigt.

	(interest)
$\square \square \square \square$	0
000	

- Stecken Sie das Sensorkabel am Controller an.
- Führen Sie eine Dunkelkorrektur durch.

Entspricht das Videosignal dem Zustand vor der Dunkelkorrektur, müssen Sie die Grenzflächen innerhalb des Messsystems reinigen.

Fahren Sie mit dem Abschnitt Schnittstelle Sensorkabel Sensor fort.

A 4.5 Schnittstelle Sensorkabel Sensor

- Entfernen Sie das Sensorkabel (Lichtwellenleiter) am Sensor.
- Entfernen Sie die vordere Schutzkappe am One-Click™ Cleaner.
- Stülpen Sie den One-Click[™] Cleaner über den Lichtwellenleiter, siehe Abbildung.
- Drücken Sie die äußere Hülse des One-Click™ Cleaners auf den Lichtwellenleiter bis ein Klickgeräusch das Ende der Reinigung anzeigt.

Stecken Sie eine Schutzkappe auf den Lichtwellenleiter.

Sensoren mit Lichtwellenleiter im Sensor:

- Entfernen Sie die Schutzkappe am One-Click™ Cleaner.
- Stülpen Sie den One-Click[™] Cleaner über den Sensor, siehe Abbildung.
- Drücken Sie die äußere Hülse des One-Click[™] Cleaners auf den Sensor bis ein Klickgeräusch das Ende der Reinigung anzeigt.

- Setzen Sie Sensorkabel und Sensor zusammen.
- Führen Sie eine Dunkelkorrektur durch.

Entspricht das Videosignal dem Zustand vor der Dunkelkorrektur, müssen Sie die Grenzflächen innerhalb des Messsystems reinigen.

Fahren Sie mit dem Abschnitt Schnittstelle Controller Sensorkabel fort.

A 4.6 Vorbeugende Schutzmaßnahme

Sensoren und Controller eines konfokal-chromatischen Sensorsystems werden mit Schutzkappen ausgeliefert. Dies verhindert eine Ablagerung von Staub oder ähnlichen Verschmutzungen an der optischen Grenzflächen.

Verschließen Sie die Lichtwellenleiteranschlüsse konsequent und umgehend, wenn Sie Sensoren wechseln oder ein Sensorkabel am Controller abstecken.

A 5 ASCII-Kommunikation mit Controller

A 5.1 Allgemein

Die ASCII-Befehle können über die Schnittstellen RS422 oder Ethernet (Port 23) an den Controller gesendet werden. Alle Befehle, Eingaben und Fehlermeldungen erfolgen in Englisch. Ein Befehl besteht immer aus dem Befehlsnamen und Null oder mehreren Parametern, die durch Leerzeichen getrennt sind und mit LF abgeschlossen werden. Wenn Leerzeichen in Parametern verwendet werden, so ist der Parameter in Anführungszeichen zu setzen, z. B. "Passwort mit Leerzeichen".

Beispiel: Ausgabe über RS422 einschalten

OUTPUT RS422 🖵

Hinweis: 🚽 muss LF beinhalten, kann aber auch CR LF sein.

Erklärung: LF Zeilenvorschub (line feed, hex 0A)

- CR Wagenrücklauf (carriage return, hex 0D)
- Lenter (je nach System hex 0A oder hex 0D0A)

Der aktuell eingestellte Parameterwert wird zurückgegeben, wenn ein Befehl ohne Parameter aufgerufen wird.

Das Ausgabe-Format ist:

<Befehlsname> <Parameter1> [<Parameter2> [...]]

Die Antwort kann ohne Änderungen wieder als Befehl für das Setzen des Parameters verwendet werden. Optionale Parameter werden nur dann mit zurückgegeben, wenn die Rückgabe nötig ist.

Nach der Verarbeitung eines Befehls wird immer ein Zeilenumbruch und ein Prompt ("->") zurückgegeben. Im Fehlerfall steht vor dem Prompt eine Fehlermeldung, die mit "Exx" beginnt, wobei xx für eine eindeutige Fehlernummer steht. Außerdem können anstatt von Fehlermeldungen auch Warnmeldungen ("Wxx") ausgegeben werden. Diese sind analog zu den Fehlermeldungen aufgebaut, z.B. "Wenn Xenonlampe zu heiß, …". Bei Warnmeldungen wurde der Befehl trotzdem ausgeführt.

Gruppe	Kapitel	Befehl	Kurzinfo	
Allgemein				
	Kap. A 5.3.1.1	HELP	Hilfe	
	Kap. A 5.3.1.2	GETINFO	Controllerinformation	
	Kap. A 5.3.1.3	ECHO	Antworttyp	
	Kap. A 5.3.1.4	PRINT	Parameterübersicht	
	Kap. A 5.3.1.5	SYNC	Synchronisation	
	Kap. A 5.3.1.6	TERMINATION	Terminierungswiderstand	
	Kap. A 5.3.1.7	RESET	Sensor booten	
	Kap. A 5.3.1.8	RESETCNT	Zähler rücksetzen	
Benutze	erebene			
	Kap. A 5.3.2.1	LOGIN	Wechsel der Benutzerebene	
	Kap. A 5.3.2.2	LOGOUT	Wechsel in die Benutzerebene user	
	Kap. A 5.3.2.3	GETUSERLEVEL	Abfrage der Benutzerebene	
	Kap. A 5.3.2.4	STDUSER	Einstellen des Standardnutzers	
	Kap. A 5.3.2.5	PASSWD	Kennwort ändern	
Eingäng	le			
	Kap. A 5.3.3	MFILEVEL	Eingangspegel Multifunktionseingänge	
Sensor				
	Kap. A 5.3.4.1	SENSORTABLE	Anzeige verfügbarer Sensoren	
	Kap. A 5.3.4.2	SENSORINFO	Informationen zum Sensor	
	Kap. A 5.3.4.3	DARKCORR	Starten des Dunkelabgleichs	
	Kap. A 5.3.4.4	LED	LED-Zustand an / aus	
	Kap. A 5.3.4.5	LEDSOURCE	Steuereingang Messlichtquelle	

A 5.2 Übersicht Befehle
Triggerung				
55-74	Kap. A 5.3.5.1	TRIGGERSOURCE	Triggerguelle	
	Kap, A 5.3.5.2	TRIGGERAT	Wirkung des Triggereingangs	
	Kap. A 5.3.5.3	TRIGGERMODE	Triggerart	
	Kap. A 5.3.5.4	TRIGGERLEVEL	Aktivpegel des Triggereingangs	
	Kap. A 5.3.5.5	TRIGGERSW	Erzeugen eines Softwaretriggersignals	
	Kap. A 5.3.5.6	TRIGGERCOUNT	Anzahl auszugebender Messwerte	
	Kap. A 5.3.5.7	TRIGINLEVEL	Pegel für den Triggereingang (TTL / HTL)	
	Kap. A 5.3.5.8	TRIGGERENCSTEPSIZE	Schrittweite Encodertriggerung	
	Kap. A 5.3.5.9	TRIGGERENCMIN	Minimum Encodertriggerung	
	Kap. A 5.3.5.10	TRIGGERENCMAX	Maximum Encodertriggerung	
Encoder	r			
	Kap. A 5.3.6.1	META_ENCODERCOUNT	Anzahl verfügbarer Encoder	
	Kap. A 5.3.6.2	ENCINTERPOLn	Einstellung Interpolationstiefe	
	Kap. A 5.3.6.3	ENCREFn	Einstellung Referenzspur	
	Kap. A 5.3.6.4	ENCVALUEn	Einstellung Encoderwertes	
	Kap. A 5.3.6.5	ENCSET	Encoderwert setzen	
	Kap. A 5.3.6.6	ENCRESET	Reset des Encoderwert	
	Kap. A 5.3.6.7	ENCMAXn	Setzen des maximalen Encoderwertes	
	Kap. A 5.3.6.8	ENCODERCOUNT	Anzahl aktiver Encoder	
Schnitts	telle	-		
	Kap. A 5.3.7	BAUDRATE	Einstellung RS422	
Paramet	terverwaltung, Eir	nstellungen laden / Speichern		
	Kap. A 5.3.8.1	BASICSETTINGS	Verbindungseinstellungen laden	
	Kap. A 5.3.8.2	CHANGESETTINGS	Geänderte Parameter anzeigen	
	Kap. A 5.3.8.3	EXPORT	Parametersätze exportieren	
	Kap. A 5.3.8.4	IMPORT	Parametersätze importieren	
	Kap. A 5.3.8.5	SETDEFAULT	Werkseinstellungen setzen	
	Kap. A 5.3.8.6	MEASSETTINGS	Messeinstellungen bearbeiten	
Messun	g	1		
	Kap. A 5.3.9.1	PEAKCOUNT	Anzahl Messpeaks	
	Kap. A 5.3.9.2	MEASPEAK	Peakauswahl	
	Kap. A 5.3.9.3	REFRACCORR	Brechzahlkorrektur	
	Kap. A 5.3.9.4	SHUTTERMODE	Belichtungsmode	
	Kap. A 5.3.9.5	MEASRATE	Messfrequenz	
	Kap. A 5.3.9.6	SHUTTER	Belichtungszeit	
	Kap. A 5.3.9.7	ROI	Maskierung des Auswertebereichs	
	Kap. A 5.3.9.8	MIN_THRESHOLD	Mindestschwelle Peakerkennung	
	Kap. A 5.3.9.9	PEAK_MODULATION	Modulation der Peaks	
Material	datenbank	· · · · - · - · -		
	Kap. A 5.3.10.1	MATERIALTABLE	Materialtabelle	
	Kap. A 5.3.10.2	MATERIAL	Material auswählen	
	Kap. A 5.3.10.3	MATERIALINFO	Materialeigenschaft anzeigen	
	Кар. А 5.3.10.4	MEIA_MAIERIAL	Vornandene Materialien, Materialnamen	
	кар. А 5.3.10.5			
	Кар. А 5.3.10.6		Materialtabelle editieren	
	Kap. A 5.3.10.7	MATERIALDELETE	Material löschen	
	кар. А 5.3.10.8	MATERIALADD	Material hinzutugen	

Messwe	rtbearbeitung				
	Kap. A 5.3.11.1	STATISTIC	Auswahl des Signals für die Statistik		
	Kap. A 5.3.11.2	META_STATISTIC	Liste möglicher Statistiksignale		
	Kap. A 5.3.11.3	STATISTICSIGNAL	Auswahl Statistiksignal		
	Kap. A 5.3.11.4	META_STATISTICSIGNAL	Liste möglich auszuwählender Statistiksignale		
	Kap. A 5.3.11.5	META_MASTERSIGNAL	Liste der möglich zu parametrisierenden Signale		
	Kap. A 5.3.11.6 MASTERSIGNAL		Parametrisieren der Mastersignale		
	Kap. A 5.3.11.7	META_MASTER	Liste möglicher Signale für das Mastern		
	Kap. A 5.3.11.8	MASTER	Mastern auslösen		
	Kap. A 5.3.11.9	MASTERSIGNALSELECT	Signal für Mastern mit externer Quelle bestimmen		
	Kap. A 5.3.11.10	MASTERSOURCE	Externe Quelle für Mastern auswählen		
	Kap. A 5.3.11.12	COMP	Berechnung im Kanal		
	Kap. A 5.3.11.13	META_COMP	Liste möglicher Berechnungssignalen		
	Kap. A 5.3.11.14	SYSSIGNALRANGE	Zweipunktskalierung Datenausgänge		
Datenau	isgabe				
	Kap. A 5.3.12.1	OUTPUT	Auswahl Digitalausgang		
	Kap. A 5.3.12.2	OUTREDUCEDEVICE	Ausgabe-Datenrate		
	Kap. A 5.3.12.3	OUTREDUCECOUNT	Reduzierungszähler		
	Kap. A 5.3.12.4	OUTHOLD	Fehlerbehandlung		
Auswahl der auszugebenden Messwerte über die Schnittstellen					
	Kap. A 5.3.13.2	OUT_RS422	Datenauswahl für RS422		
	Kap. A 5.3.13.3	META_OUT_RS422	Liste möglicher Signale RS422		
	Kap. A 5.3.13.4	GETOUTINFO_RS422	Liste ausgewählter Signale, Reihenfolge über RS422		
Schalta	usgänge		1		
	Kap. A 5.3.14.2	ERROROUTn	Auswahl Fehlersignal zur Ausgabe		
	Kap. A 5.3.14.3	META_ERRORLIMITSIGNAL	Liste der möglichen Signale für den Errorausgang		
	Kap. A 5.3.14.4	ERRORLIMITSIGNALn	Setzen des auszuwertenden Signales		
	Kap. A 5.3.14.5	ERRORLIMITCOMPARETOn	Setzen der Grenzwerte		
	Kap. A 5.3.14.6	ERRORLIMITVALUESn	Setzen des Wertes		
	Kap. A 5.3.14.7	ERRORLEVELOUTn	Schaltverhalten Schaltausgänge		
	Kap. A 5.3.14.8	ERRORHYSTERESIS	Schalthysterese Schaltausgänge		
Analoga	usgang		1		
	Kap. A 5.3.15.1	ANALOGOUT	Datenauswahl für den Analogausgang		
	Kap. A 5.3.15.2	META_ANALOGOUT	Liste möglicher Signale Analogausgang		
	Kap. A 5.3.15.3	ANALOGRANGE	Setzen Strom-/Spannungsbereichs des Digital-Analog- Wandlers (DAC)		
	Kap. A 5.3.15.4	ANALOGSCALEMODE	Einstellung der Skalierung des DAC		
	Kap. A 5.3.15.5	ANALOGSCALERANGE	Einstellung des Skalierungsbereiches		
Systeme	einstellung Taster	nfunktionen			
	Kap. A 5.3.16.1	KEYLOCK	Auswahl der Tastensperre		

A 5.3 Allgemeine Befehle

A 5.3.1 Allgemein

A 5.3.1.1 Hilfe

HELP [<Befehl>]

Ausgabe einer Hilfe zu jedem Befehl. Wird kein Befehl angegeben, wird eine allgemeine Hilfe ausgegeben.

A 5.3.1.2 Controllerinformation

GETINFO

Abfragen der Sensor-Information. Ausgabe siehe untenstehendes Beispiel:

->GETINFO	
Name:	IFD2415-3/IE
Serial:	12345678
Option:	000
Article:	1234567
MAC-Address:	00-0C-12-01-E2-0C
Version:	004.004
Hardware-rev:	01
Boot-version:	001.018
BuildID:	57
Output-variant:	IE-setup
->	

Name: Modelname des Controllers / der Controllerreihe

Serial: Seriennummer des Controllers Option: Optionsnummer des Controllers Article: Artikelnummer des Controllers MAC-Address: Adresse des Netzwerkadapters Version: Version der gebooteten Software Hardware-rev: Verwendete Hardwarerevision Boot-version: Version des Bootloaders BuildID: Identifikationsnummer für die erzeugte Software A 5.3.1.3 Antworttyp

ECHO ON | OFF

Der Antworttyp beschreibt den Aufbau einer Befehlsantwort.

ECHO ON: Es wird der Befehlsname und die Befehlsantwort oder eine Fehlermeldung ausgegeben.

ECHO OFF: Es wird nur die Befehlsantwort oder eine Fehlermeldung zurückgegeben.

A 5.3.1.4 Parameterübersicht

PRINT ALL

ohne Parameter: Dieser Befehl gibt eine Liste aller Einstellparameter und deren Wert aus.

- ALL : Dieser Befehl gibt eine Liste aller Einstellparameter und deren Wert, als auch Informationen wie z. B. Sensortabelle oder GETINFO, aus

A 5.3.1.5 Synchronisation

SYNC NONE | MASTER | SLAVE_SYNTRIG | SLAVE_TRIGIN

Einstellen der Synchronisationsart:

- NONE: Keine Synchronisation
- MASTER: Controller ist Master, d. h. er gibt Synchronisationsimpulse am Ausgang Sync/Trig aus
- SLAVE_SYNTRIG: Controller ist Slave und erwartet Synchron-Impulse von z. B. einem anderen IFC2421/2422/2465/2466 oder einer ähnlichen Impulsquelle am Eingang Sync/Trig.
- SLAVE_TRIGIN: Controller ist Slave und erwartet Synchron-Impulse von einem Frequenzgenerator am Eingang TrigIn.

Eingang	Verhalten
Sync/Trig	Differenziell
TrigIn	TTL / HTL

Sync/Trig ist alternativ ein Ein- oder ein Ausgang, d. h. es ist darauf zu achten, dass immer einer der Controller auf Master und der andere auf Slave geschaltet ist.

Außerdem dient der Eingang TrigIn ebenfalls als Triggereingang für die Triggerarten Flanken- und Pegeltriggerung.

A 5.3.1.6 Terminierungswiderstand an Sync/Trig

TERMINATION OFF | ON

Der Terminierungswiderstand 120 Ohm am Synchroneingang Sync/Trig wird aus- oder eingeschaltet.

A 5.3.1.7 Sensor booten

RESET

Der Controller wird neu gestartet.

A 5.3.1.8 Zähler zurücksetzen

RESETCNT [TIMESTAMP] [MEASCNT]

Der Zähler wird nach Eintreffen der gewählten Triggerflanke zurückgesetzt.

- TIMESTAMP: setzt den Zeitstempel zurück
- MEASCNT: setzt den Messwertzähler zurück

A 5.3.2 Benutzerebene

A 5.3.2.1 Wechsel der Benutzerebene

LOGIN <Passwort>

Eingabe des Passwortes, um in eine andere Benutzerebene zu gelangen. Es gibt folgende Benutzerebenen:

- USER: Lesenden Zugriff auf alle Elemente + Benutzung der Web-Diagramme
- PROFESSIONAL: Lesenden/Schreibenden Zugriff auf alle Elemente

A 5.3.2.2 Wechsel in die Benutzerebene

LOGOUT

Setzen der Benutzerebene auf USER.

A 5.3.2.3 Abfrage der Benutzerebene

GETUSERLEVEL

Abfragen der aktuellen Benutzerebene.

Mögliche Ausgaben, siehe Kap. A 5.3.2.1, "Wechsel der Benutzerebene".

A 5.3.2.4 Einstellen des Standardnutzers

STDUSER USER | PROFESSIONAL

Einstellen des Standardbenutzers, der nach dem Systemstart angemeldet ist.

A 5.3.2.5 Kennwort ändern

PASSWD <Altes Passwort> <Neues Passwort> <Neues Passwort>

Ändern des Passwortes für den Benutzer PROFESSIONAL. Das werkseitige Standardpasswort ist "000".

Es muss dafür das alte und zweimal das neue Passwort angegeben werden. Stimmen die neuen Passworte nicht überein, wird eine Fehlermeldung ausgegeben. Die Passwortfunktion unterscheidet Groß/Kleinschreibung. Ein Passwort darf nur die Buchstaben A bis Z und Zahlen ohne Umlaute/Sonderzeichen enthalten. Die maximale Länge ist auf 31 Zeichen beschränkt.

A 5.3.3 Pegel Multifunktionseingänge

MFILEVEL HTL | TTL

Auswahl Eingangspegel der Multifunktionseingänge (MFI). Select input level of multi function input (MFI).

- HTL: HTL-Pegel
- TTL: TTL-Pegel

A 5.3.4 Sensor

A 5.3.4.1 Info zu Kalibriertabellen

SENSORTABLE

->SENSORTABLE					
Position	Sensor name,	Measurement range,	Serial number		
Ο,	IFS2404-3,	3.000mm,	05110005		
1,	IFS2404-6,	6.000mm,	05120003		
2,	IFS2404-2,	2.000mm,	00001335		

Ausgabe aller verfügbaren (angelernten) Sensoren.

Der Befehl SENSORTABLE ist für das IFD2411 gültig.

A 5.3.4.2 Sensorinformationen

SENSORINFO

Ausgabe der Informationen des Sensor (Name, Messbereich und Seriennummer).

->SENSORINFO	
Position:	0
Name:	BG
Measurement range:	3.000 mm
Serial:	12345678

A 5.3.4.3 Dunkelkorrektur

DARKCORR

Durchführung des Dunkelabgleichs für den aktuellen Sensor. Der Dunkelabgleich ist abhängig vom Sensor und wird für jeden einzelnen Sensor im Controller gespeichert.

DARKCORR PRINT

Listet die Werte der Dunkelkorrekturtabelle.

A 5.3.4.4 LED

LED OFF | ON

Schaltet die LED des jeweiligen Kanales an bzw. aus.

A 5.3.4.5 Steuereingang Messlichtquelle

```
LEDSOURCE [SOFTWAREONLY | MFI1 | MFI2]
```

- SOFTWAREONLY: Messlichtquelle kann einzig durch Software gesteuert werden; über ASCII-Befehl LED ON/OFF oder Webinterface
- MFI1: Ansteuerung der Messlichtquelle über ausgewählten Multifunktionseingang MFI1
- MFI2: Ansteuerung der Messlichtquelle über ausgewählten Multifunktionseingang MFI2

A 5.3.5 Triggerung

A 5.3.5.1 Triggerquelle auswählen

TRIGGERSOURCE NONE | SYNCTRIG | TRIGIN | SOFTWARE | ENCODER1 | ENCODER2

- NONE: Keine Triggerquelle verwenden
- SYNCTRIG: Verwende den Eingang Sync/Trig
- TRIGIN: Verwende den Eingang TrigIn
- SOFTWARE: Triggerung wird durch das Kommando TRIGGERSW ausgelöst.
- ENCODER1: Encoder-Triggerung von Encoder 1
- ENCODER2: Encoder-Triggerung von Encoder 2

A 5.3.5.2 Ausgabe von getriggerten Werten, mit/ohne Mittelung

TRIGGERAT INPUT | OUTPUT

- INPUT: Triggerung der Messwertaufnahme. In die Mittelwertberechnung gehen unmittelbar vor dem Triggerereignis gemessene Werte nicht ein, stattdessen aber ältere Messwerte, die bei vorhergehenden Triggerereignissen ausgegeben wurden.
- OUTPUT: Triggerung der Messwertausgabe. In die Mittelwertberechnung gehen unmittelbar vor dem Triggerereignis gemessene Werte ein.

Als Werkseinstellung ist die Triggerung der Messwertaufnahme aktiviert.

A 5.3.5.3 Triggerart

TRIGGERMODE EDGE | PULSE

Auswahl der Triggerart.

- PULSE: Pegeltriggerung
- EDGE: Flankentriggerung

A 5.3.5.4 Aktivpegel des Triggereinganges

TRIGGERLEVEL HIGH | LOW

- HIGH: Flankentriggerung: Steigende Flanke, Pegeltriggerung: High-Aktiv
- LOW: Flankentriggerung: Fallende Flanke, Pegeltriggerung: Low-Aktiv

A 5.3.5.5 Software-Triggerimpuls

TRIGGERSW

Erzeugt einen Software-Triggerimpuls, wenn die Triggerquelle auf Software eingestellt ist.

A 5.3.5.6 Anzahl der auszugebenden Messwerte

```
TRIGGERCOUNT NONE | INFINITE | <n>
```

- NONE: Stopp der Triggerung
- <n>: Anzahl der auszugebenden Messwerte nach einem Triggerimpuls (bei Flankentriggerung oder Softwaretriggerung)
- Infinite: Start einer unendlichen Messwertausgabe nach einem Triggerimpuls (bei Flankentriggerung oder Softwaretriggerung)

A 5.3.5.7 Pegelauswahl Triggereingang TrigIn

TRIGINLEVEL TTL | HTL

Die Pegelauswahl gilt nur für den Eingang TrigIn. Der Eingang Sync/Trig erwartet ein differenzielles Signal.

- TTL: Eingang erwartet TTL-Signal.
- HTL: Eingang erwartet HTL-Signal.

A 5.3.5.8 Schrittweite Encodertriggerung

TRIGGERENCSTEPSIZE [value of step size]

Setzt die Anzahl der Encoderschritte, nach denen je ein Messwert ausgegeben wird (min: 0, max: 2³¹-1). Bei 0 werden zwischen Min und Max kontinuierlich Messwerte ausgegeben.

A 5.3.5.9 Minimum Encodertriggerung

TRIGGERENCMIN [minimum value]

Setzt den minimale Encoderwert, ab dem getriggert wird (min: 0 max: 2³²-1).

A 5.3.5.10 Maximum Encodertriggerung

TRIGGERENCMAX [maximum value]

Setzt den maximalen Encoderwert, bis zu dem getriggert wird (min: 0 max: 2³²-1).

A 5.3.6 Encoder

A 5.3.6.1 Maximale Anzahl verfügbarer Encoder

META ENCODERCOUNT

Listet die Anzahl der verfügbaren Encoder, die mit ENCODERCOUNT ausgewählt werden können.

A 5.3.6.2 Encoder-Interpolationstiefe

ENCINTERPOL1	1		2		3
ENCINTERPOL2	1		2		3
ENCINTERPOL3	1		2		3

Setzen der Interpolationstiefe des jeweiligen Encoder-Eingangs.

- 1 Einfache Interpolation
- 2 Zweifache Interpolation
- 3 Vierfache Interpolation

A 5.3.6.3 Wirkung der Referenzspur

```
ENCREF1 NONE | ONE | EVER
```

```
ENCREF2 NONE | ONE | EVER
```

Einstellung der Wirkung der Encoder-Referenzspur.

- NONE: Referenzmarke des Encoders hat keine Wirkung.
- ONE: Einmaliges Setzen (beim ersten Erreichen der Referenzmarke wird der Encoderwert, siehe Kap. A 5.3.6.4, übernommen).
- EVER: Setzen bei allen Marken (bei jedem Erreichen der Referenzmarke wird der Encoderwert, siehe Kap. A 5.3.6.4, übernommen).

A 5.3.6.4 Encoderwert

ENCVALUE1 <Encoderwert> ENCVALUE2 <Encoderwert> ENCVALUE3 <Encoderwert>

Gibt an, auf welchen Wert der entsprechende Encoder bei Erreichen einer Referenzmarke (oder per Software) gesetzt werden soll.

Der Encoderwert kann zwischen 0 und 2³²-1 liegen.

Mit dem Setzen des ENCVALUE wird automatisch der Algorithmus zum Erkennen der ersten Referenzmarke zurückgesetzt, siehe Kap. A 5.3.6.3.

A 5.3.6.5 Encoderwert per Software setzen

ENCSET 1 | 2 | 3

Setzen des Encoderwertes siehe Kap. A 5.3.6.4, im angegebenen Encoder per Software (nur bei ENCREF NONE möglich, ansonsten kehrt der Befehl sofort ohne Fehlermeldung zurück).

A 5.3.6.6 Rücksetzen der Erkennung der ersten Referenzmarke

ENCRESET 1 | 2

Rücksetzen der Erkennung der ersten Referenzmarke, siehe Kap. A 5.3.6.3 (nur bei ENCREF ONE möglich, ansonsten kehrt der Befehl sofort ohne Fehlermeldung zurück).

A 5.3.6.7 Maximaler Encoderwert

ENCMAX1 <Encoderwert> ENCMAX2 <Encoderwert> ENCMAX3 <Encoderwert>

Gibt den maximalen Wert des Encoders an, nach welchem der Encoder wieder auf 0 springt. Kann z.B. für Dreh-Encoder ohne Referenzspur verwendet werden.

Der Encoderwert kann zwischen 0 und 2³²-1 liegen.

A 5.3.6.8 Anzahl aktiver Encoder

ENCODERCOUNT 1 | 2 | 3

- 1: Encoder 1 ist aktiv, Encoder 2 und 3 sind inaktiv
- 2: Encoder 1 und 2 sind aktiv, Encoder 3 ist inaktiv
- 3: Encoder 1 bis 3 sind aktiv

Befehl ist gültig bei IFD2410/2415.

A 5.3.7 Einstellung der RS422-Baudrate

BAUDRATE <Baudrate>

Einstellbare Baudraten in Bps für die RS422-Schnittstelle:

9600, 115200, 230400, 460800, 691200, 921600, 2000000, 3000000, 4000000

A 5.3.8 Parameterverwaltung, Einstellungen laden / Speichern

A 5.3.8.1 Verbindungseinstellungen laden / speichern

BASICSETTINGS READ | STORE

- READ: Liest die Verbindungseinstellungen aus dem Controller-Flash.
- STORE: Speichert die aktuellen Verbindungseinstellungen aus dem Controller-RAM in den Controller-Flash.

A 5.3.8.2 Geänderte Parameter anzeigen

CHANGESETTINGS

Gibt alle geänderten Einstellungen aus.

A 5.3.8.3 Export von Parametersätzen in PC

```
EXPORT (MEASSETTINGS <SetupName>) | BASICSETTINGS |
MEASSETTINGS ALL | MATERIALTABLE | ALL
```

Speichern von Parametern in externem Gerät, z. B. PC.

Die Export-Datei ist als lesbare JavaScript Object Notation, kurz JSON, formatiert.

- MEASSETTINGS < SetupName>: Exportieren des angegebenen MeasSettings. Vor dem Import wird nichts gelöscht.
- BASICSETTINGS: Exportieren der aktuell gespeicherten BasicSettings. Vor dem Import werden die BasicSettings gelöscht.
- MEASSETTINGS_ALL: Exportieren aller gespeicherten MeasSettings, incl. des Initial Settings. Vor dem Import werden alle vorhandenen MeasSettings gelöscht.
- MATERIALTABLE: Exportieren der gespeicherten Materialtabelle. Vor dem Import wird die vorhandene Materialtabelle gelöscht.
- ALL: Kompletter Export aller gespeicherten Settings (Basic und Meas), der Materialtabelle sowie aller gespeicherten Sensordaten. Vor dem Import wird alles gelöscht.

A 5.3.8.4 Import von Parametersätzen aus PC

IMPORT [FORCE] [APPLY] <Daten>

Laden von Parametern aus externem Gerät, z. B. PC.

Die Import-Datei ist eine zuvor mit Export gespeicherte JSON-Datei.

- FORCE: Überschreiben von Meassettings mit dem gleichen Namen, ansonsten wird bei gleichen Namen eine Fehlermeldung zurückgegeben. Beim Import aller

Meassettings oder der Basicsettings muss immer Force angegeben werden.

- APPLY : Übernehmen der Einstellungen nach dem Importieren und lesen der Initial Settings.

A 5.3.8.5 Werkseinstellungen

SETDEFAULT ALL | MEASSETTINGS | BASICSETTINGS | MATERIAL

Setzen der Defaultwerte (Rücksetzen auf Werkseinstellung), löschen der entsprechenden Settings im Flash.

- ALL: Es werden alle Setups gelöscht und die Default-Parameter geladen. Zusätzlich wird die aktuelle Materialtabelle durch die Standard-Materialtabelle überschrieben.
- MEASSETTINGS: Einstellungen der Messaufgabe.
- BASICSETTINGS: Grundeinstellungen wie z. B. IP, Baudrate, Sprache, Einheit.
- MATERIAL: Nur Überschreiben der aktuellen Materialtabelle durch die Standard-Materialtabelle.

A 5.3.8.6 Messeinstellungen bearbeiten, speichern, anzeigen, löschen

MEASSETTINGS <Unterkommando> [<Name>]

Einstellungen der Messaufgabe. Bewegt applikationsabhängige Messeinstellungen zwischen Controller-RAM und Controller-Flash. Entweder werden die herstellereigenen Presets oder die nutzerdefinierten Einstellungen verwendet. Jedes Preset kann als nutzerdefinierte Einstellung verwendet werden.

Unterkommandos:

PRESETMODE <mode></mode>	Bestimmt die Preset-Dynamik.
<mode> = NONE STATIC BALANCED DYNAMIC</mode>	Bei NONE ist keine Auswahl für ein Preset vorhanden.
PRESETLIST	Listet alle vorhandenen Presets (Namen): "Name1" "Name2" ""
READ <name></name>	Lädt ein Basic-Settings oder ein Meassettings / Preset (Name angeben) aus dem Controller-Flash.
STORE <name></name>	Speichert ein Basic-Settings oder ein Meas-Settings in den Controller-Flash. Name angeben oder es wird unter dem aktuel- len Namen gespeichert.
DELETE <name></name>	Löscht die benannte Messeinstellung aus dem Controller-Flash.
RENAME <nameold> <namenew> [FORCE]</namenew></nameold>	Ändert den Namen einer Messeinstellung im Controller-Flash. Mit FORCE kann eine vorhandene Messeinstellung überschrie- ben werden.
LIST	Listet alle gespeicherten Messeinstellungen (Namen) "Name1" "Name2" "…". Die Reihenfolge ist nach den internen Slot-Num- mern, also nicht die Reihenfolge des Speicherns.
CURRENT	Ausgabe des aktuellen Meassettings / Presets (Name)
INITIAL AUTO	Lädt beim Start des Controllers die zuletzt gespeicherte Einstel- lung bzw. das erste Preset, wenn keine Setups vorhanden sind.
INITIAL <name></name>	Lädt die benannte Messeinstellung beim Start des Controllers. Presets können nicht angegeben werden.

A 5.3.9 Messung

A 5.3.9.1 Peakanzahl

PEAKCOUNT <n>

Gibt die maximale Anzahl an Peaks wieder, die ausgewertet werden sollen.

- Bei Abstandsmessung <n> = 1
- Bei Dickenmessung <n> = 2
- Bei Mehrschichtmessung <n> >2

A 5.3.9.2 Peakauswahl

MEASPEAK F_L|L_SL|F_S|H_SH

Auswahl der verwendeten Peaks für die Messung

Abstandsmessung		Dickenmessung	
F_L:	erster Peak	F_L:	erster Peak und letzter Peak
L_SL:	letzter Peak	L_SL:	vorletzter und letzter Peak
F_S:	erster Peak	F_S:	erster Peak und zweiter Peak
H_SH:	höchster Peak	H_SH:	höchster und zweithöchster

A 5.3.9.3 Anzahl Peaks und Ein-/Ausschalten der Brechzahlkorrektur

REFRACCORR on | off

- On: Die Brechzahlkorrektur wird mit den eingestellten Materialien durchgeführt, Standardeinstellung.
- Off: Es wird die Brechzahl 1.0 für alle Schichten angenommen.

A 5.3.9.4 Belichtungsmode

SHUTTERMODE MEAS | MANUAL | 2TIMEALT | 2TIMES

- MEAS: Automatische Belichtungszeitregelung bei fester Messrate, für Messung empfohlen
- MANUAL: Wählbare Belichtungszeit und Messrate.
- 2TIMEALT: Modus mit 2 manuell eingestellten Belichtungszeiten, die immer abwechselnd angewendet werden, für 2 sehr unterschiedlich hohe Peaks bei der Dickenmessung. Besonders empfohlen, wenn der kleinere Peak verschwindet bzw. der größere übersteuert.
- 2TIMES: Schnellster Modus mit 2 manuell voreingestellten Belichtungszeiten, von denen automatisch die besser geeignete gewählt wird. Empfohlen bei Abstandsmessung für sehr schnell wechselnde Oberflächeneigenschaften, z. B. verspiegeltes / entspiegeltes Glas.

A 5.3.9.5 Messrate

MEASRATE <Messrate>

Eingabe der Messrate in kHz: IFD2410, IFD2411: Wertebereich 0.100 ... 8.000; IFD2415: Wertebereich 0.100 ... 25.000.

Es können maximal drei Nachkommastellen angegeben werden, z. B. 0.100 für 0,1 kHz.

A 5.3.9.6 Belichtungszeit

SHUTTER <Belichtungszeit1> [<Belichtungszeit2>]

Angabe der Belichtungszeiten für den manuellen und die Zwei-Zeiten-Belichtungsmodus.

Die Belichtungszeit wird mit drei Dezimalstellen verarbeitet. Die minimale Schrittweite beträgt 0,1 µs.

A 5.3.9.7 Maskierung des Auswertebereichs

ROI <Start> <Ende>

Setzen des Auswertebereiches für das "Range of interest" des jeweiligen Kanals. Anfang und Ende müssen zwischen 0 und 511 liegen. Die Angabe erfolgt in der Einheit Pixel. Der Startwert muss kleiner als der Endwert sein.

A 5.3.9.8 Mindestschwelle Peakerkennung

MIN_THRESHOLD <n>

Setzt die minimale Erkennungsschwelle. Ein Peak muss oberhalb dieser Schwelle sein, damit dieser als Peak erkannt wird.

Die Eingabe erfolgt in % und bezieht sich auf das dunkelkorrigierte Signal.

A 5.3.9.9 Peakmodulation

PEAK MODULATION <n>

Gibt die Höhe der Durchmodulation an, damit ineinander laufende Peaks getrennt werden. Bei 100 % erfolgt keine Peaktrennung und bei 0 % (Werkseinstellung) werden alle Peaks getrennt.

Somit kann man entsprechende Peakartefakte entfernen bzw. werden diese nicht als einzelne Peaks betrachtet.

A 5.3.10 Materialdatenbank

A 5.3.10.1 Materialtabelle

MATERIALTABLE

Ausgabe der im Controller gespeicherten Materialtabelle.

->MAT	ERIALTABLE					
			Refraction inde	x	Abbenumber	
Pos,	Name,	nF at 486nm,	nd at 587nm,	nC at 656nm,	vd	Description
0	Vakuum,	1.000000,	1.000000,	1.000000,	0.00000	Vakuum; Luft(naeherungsweise)
1	Wasser,	1.337121,	1.333044,	1.331152,	0.00000	
1	Ethannol,	1.361400,	1.361400,	1.361400,	0.00000	
7	PC,	1.599439,	1.585470,	1.579864,	0.00000	Polycarbonat
8	Quarzglas,	1.463126,	1.458464,	1.456367,	0.00000	Siliziumdioxid, Fused Silica
9	BK7,	1.522380,	1.516800,	1.514320,	0.00000	Kronglas
->						

A 5.3.10.2 Material auswählen

MATERIAL <Materialname>

Ändern des Materials zwischen Abstand 1 und 2 für den jeweiligen Kanal.

Es muss der Materialname inkl. Leerzeichen eingegeben werden. Der Befehl unterstützt case sensitive Eingaben, wobei zwischen Groß- und Kleinbuchstaben unterschieden wird. Die maximale Länge des Materialnamens ist 30 Zeichen.

A 5.3.10.3 Materialeigenschaft anzeigen

MATERIALINFO

Ausgabe der Materialeigenschaften der gewählten Schicht (Layer). Schicht 1 liegt zwischen Abstand 1 und 2, Schicht 2 zwischen Abstand 2 und 3 usw. Ohne Parameter werden die Informationen zu Schicht 1 ausgegeben.

Beispiel:

->MATERIALINFO					
Name:					BK7
Description	n:				Kronglas
Refraction	index	nF	at	486nm:	1.522380
Refraction	index	nd	at	587nm:	1.516800
Refraction	index	nC	at	656nm:	1.514320
Abbe value	vd:				0.00000
->					

A 5.3.10.4 Vorhandene Materialnamen im Controller

META_MATERIAL

Listet die bereits im Controller gespeicherten Materialnamen auf.

A 5.3.10.5 Geschützte Materialien im Controller

META MATERIAL PROTECTED

Display a list of all materialnames stored in the controller during calibration. These materials cannot be edited or deleted.

Listet im Controller gespeicherte Materialien auf, die während der Kalibrierung aufgenommen wurden. Diese Materialien können weder bearbeitet noch gelöscht werden.

A 5.3.10.6 Materialtabelle editieren

MATERIALEDIT <Name> <Beschreibung> (NX <nF> <nd> <nC>) | (ABBE <nd> <vd>)

Editieren eines bestehenden Materials. Ein Material wird entweder durch drei Brechzahlen oder durch eine Brechzahl und Abbezahl charakterisiert.

- Name: Name of the material
- Beschreibung: Kurzbeschreibung des Materials
- nF: Brechzahl nF bei 670 nm (1.000000 ... 4.000000)
- nd: Brechzahl nd bei 587 nm (1.000000 ... 4.000000)
- nC: Brechzahl nC bei 656 nm (1.000000 ... 4.000000)
- vd: Abbe value (10.000000 ... 100.000000)

Wenn der Materialname schon vergeben ist, wird dieses Material editiert. Ansonsten wird ein neues Material angelegt. Es gibt maximal 20 Materialien.

A 5.3.10.7 Löschen eines Materials

MATERIALDELETE <Name>

Löschen eines Materials.

- Name: Name des Materials (Länge: max. 30 Zeichen)

A 5.3.10.8 Material ergänzen

MATERIALADD <Name> <Beschreibung> (NX <nF> <nd> <nC>)|(ABBE <nd> <vd>)

Hinzufügen eines Materials in die Materialtabelle. Ein Material wird entweder durch drei Brechzahlen oder durch eine Brechzahl und Abbezahl charakterisiert.

- Name: Name of the material
- Beschreibung: Kurzbeschreibung des Materials
- nF: Brechzahl nF bei 670 nm (1.000000 ... 4.000000)
- nd: Brechzahl nd bei 587 nm (1.000000 ... 4.000000)
- nC: Brechzahl nC bei 656 nm (1.000000 ... 4.000000)
- vd: Abbe value (10.000000 ... 100.000000)

A 5.3.11 Messwertbearbeitung

A 5.3.11.1 Statistikberechnung

STATISTIC <signal> RESET

Setzt einzelne Statistik zurück.

- <signal>: Statistikdaten Minimum, Maximum oder Peak-Peak

A 5.3.11.2 Liste Statistiksignale

META_STATISTIC

Gibt eine Liste mit den aktiven Statistiksignalen wieder. Diese Signale wurden unter STATISTICSIGNAL definiert.

A 5.3.11.3 Auswahl Statistiksignal

STATISTICSIGNAL <signal>

Für dieses ausgewählte Signal werden die Statistiken angelegt. Ein Liste mit möglichen Signalen findet man mit dem Befehl META STATISTICSIGNAL.

Es werden neue Signal angelegt, die dann über die Schnittstellen ausgegeben werden können.

- <signal>_MIN --> Minimum des Signales
- <signal>_MAX --> Maximum des Signales
- <signal>_PEAK --> <signal>_max <signal>_min

A 5.3.11.4 Liste möglich auszuwählender Statistiksignale

META STATISTICSIGNAL

Listet alle möglichen Signal auf, die in die Statistik eingehen können.

A 5.3.11.5 Liste der möglich zu parametrisierenden Signale

META_MASTERSIGNAL

Listet alle möglichen Signale auf, die für das Mastern verwendet werden können.

A 5.3.11.6 Parametrisieren der Mastersignale

```
MASTERSIGNAL [<signal>]
MASTERSIGNAL <signal> <master value>
MASTERSIGNAL <signal> NONE
```

Definiert das zu masternde Signal. Mit dem Parameter NONE wird das Signal wieder zurückgesetzt. Die Funktion selbst wird mit MASTER ausgelöst.

- <signal>: ein bestimmtes Mess- oder berechnetes Signal auswählen, auf das der Masterwert gesetzt werden soll, siehe META_MASTERSIGNAL
- <master value> Masterwert in mm, Wertebereich: -2147.0 ... 2147.0

A 5.3.11.7 Liste möglicher Signale für das Mastern

META MASTER

Listet alle definierten Mastersignale vom Befehl MASTERSIGNAL auf. Diese können mit dem Befehl MASTER verwendet werden.

A 5.3.11.8 Mastern / Nullsetzen

MASTER [<signal>] MASTER [ALL|<signal> [SET|RESET]]

Der Befehl MASTER ist nicht kanalspezifisch. Es gibt bis zu 10 Mastersignale in dem Controller. Diese 10 Signale können auf alle intern bestimmten Werte, auch verrechnete Werte, angewandt werden.

Mit diesem Befehl wird das Mastern für das entsprechende Signal gesetzt oder zurück gesetzt.

- ALL: alle Signale für die Masterung verwenden
- <signal>: ein bestimmtes Mess- oder berechnetes Signal für die Masterung verwenden
- SET | RESET: Funktion starten bzw. beenden

Ist der Masterwert 0, so hat die Funktion Mastern die gleiche Funktionalität wie das Nullsetzen.

Das Master-Kommando wartet maximal 2 Sekunden auf den nächsten Messwert und benutzt diesen als Master-Wert. Wenn innerhalb dieser Zeit kein Messwert aufgenommen wurde, z.B. bei externer Triggerung, kehrt das Kommando mit dem Fehler "E32 Timeout" zurück. Der Masterwert wird mit sechs Nachkommastellen verarbeitet.

A 5.3.11.9 Signal für Mastern mit externer Quelle

Mess- oder berechnetes Signal auswählen, das mit den Multifunktionseingängen bzw. mit einer externe Quelle gemastert werden kann. Eine Liste alle definierten Mastersignale liefert META_MASTER. Die Konfiguration der Signale erfolgt mit MASTERSIGNAL.

MASTERSIGNALSELECT [ALL | NONE | <signal1> [| <signal2> [...]]]

- ALL: Alle konfigurierten Signale werden mit der gewählten Eingangsquelle gemastert.
- NONE: keine Masterung.
- signal: Signal wird mit externer Quelle gemastert

A 5.3.11.10 Mastern mit externer Quelle

MASTERSOURCE [NONE|MFI1|MFI2]

Wählen Sie den Eingang aus, mit dem eine Masterung/Nullsetzen ausgelöst werden soll.

- NONE: No port selected. (Controlling by commands is possible.)
- MFI1: Use MFI1-port to control the mastering function.
- MFI2: Use MFI2-port to control the mastering function.

A 5.3.11.11 Beispiel Mastern

Für das Beispiel wurde im Controller das Preset Standard matt Gegenüberliegende Dickenmessung ausgewählt, Ausführung der Kommandos mit dem Programm Telnet, es sind keine Variablen definiert.

->0 109.254.100.150	
->META_MASTERSIGNAL	// Liste alle Variablen, auf die gemastert werden kann
META_MASTERSIGNAL 01DIST1 01DIST1 FOIL	
->META_MASTER	// Liste alle Variablen, die mit einem Masterwert belegt sind
META_MASTER NONE	
->MASTERSIGNAL 01DIST1 1.0	// Variable 01DIST1 auf den Wert 1,0 setzen
->MASTERSIGNAL FOIL 2.1	// Variable FOIL auf den Wert 2,1 setzen
->META_MASTER	// Liste alle Variablen, die mit einem Masterwert belegt sind;
META_MASTER 01DIST1 FOIL	die Variable 01DIST1 ist nun belegt
->MASTER ALL	// Liste alle 10 möglichen Variablen auf und zeige deren Status
MASTER 01DIST1 INACTIVE	
MASTER FOIL INACTIVE	
MASTER NONE	
MASTER NONE	
MASTER NONE	01DIST1 01DIST2 Foil Messrate
	0.89077 mm 2.12215 mm 1.23137 mm 1.200 kHz
->MASTER ALL SET	// Löst eine Mastermessung für alle belegten Variablen aus
	01DIST1 01DIST2 Foil Messrate
	1.00314 mm 2.12511 mm 2.10092 mm 1.200 kHz
->MASTER 01DIST1 RESET	// für die Variable 01DIST1 wird der Offset (Masterwert) zurückge-
	nommen
	01DIST1 01DIST2 Foil Messrate
	0.89105 mm 2.12485 mm 2.10154 mm 1.200 kHz

->MASTER ALL				
MASTER 01DIST1 INACTIVE				
MASTER FOIL ACTIVE				
MASTER NONE				
MASTER NONE				
MASTER NONE				
->MASTER FOIL RESET	// für die Variable men	FOIL wird der C	Offset (Masterwe	rt) zurückgenom-
	01DIST1	01DIST2	Foil	Messrate
	0.89087 mm	2.12048 mm	1.23745 mm	1.200 kHz
->MASTERSIGNAL 01DIST1 NONE	// Die Variable 01	DIST1 wird gelö	scht	
->MASTERSIGNAL FOIL NONE	// Die Variable FC	IL wird gelöscht	t	
->MASTER ALL	// keine Variable v	vorhanden, auf c	die eine Mastern	nessung ange-
MASTER NONE	wandt werden kö	nnte		
MASTER NONE				

A 5.3.11.12 Berechnung im Kanal

COMP [<channel> [<id>]]
COMP <channel> <id> MEDIAN <signal> <median data count>
COMP <channel> <id> MOVING <signal> <moving data count>
COMP <channel> <id> RECURSIVE <signal> <recursive data count>
COMP <channel> <id> CALC <factor1> <signal> <factor2> <signal> <offset> <name>
COMP <channel> <id> THICKNESS <signal> <signal> <name>
COMP <channel> <id> COPY <signal> <name>

COMP <channel> <id> NONE

Mit diesem Befehl werden alle kanalspezifischen sowie controllerspezifischen Verrechnungen definiert.

- <channel> CH01 CH02 SYS</channel>	Kanalauswahl
- <id> 110</id>	Nummer Verrechnungsblock
- <signal></signal>	Messsignal; die verfügbaren Signale können Sie mit dem Befehl META_COMP abfragen
- <median count="" data=""> 3 5 7 9</median>	Mittelungstiefe Median
- <moving count="" data=""> 2 4 8 16 32 64 128 256 512 1024 2048 4096</moving>	Mittelungstiefe gleitender Mittelwert
- <recursive count="" data=""> 2 32000</recursive>	Mittelungstiefe rekursiver Mittelwert
- <factor1>, <factor2> -32768,0 32767,0</factor2></factor1>	Multiplikationsfaktor
- <offset> -2147,0 2147,0</offset>	Korrekturwert in mm
- <name></name>	Name Berechnungsblock; Länge min 2 Zeichen, max. 15 Zeichen. Erlaubte Zeichen a-zA-Z0-9, der Name muss mit einem Buchstaben beginnen.
	Nicht erlaubt sind Kommandonammen, z. B. STATISTIC, MASTER, CALC, NONE, ALL.

Mit dem Kommando COMP können Sie neue Berechnungsblöcke anlegen, Berechnungsblöcke modifizieren oder löschen.

Funktionen:

- MEDIAN, MOVING und RECURSIVE: Mittelungsfunktionen
- CALC: Berechnungsfunktion entsprechend der Formel (<factor1> * <signal>) + (<factor2> * <signal>) + <offset>
- Thickness: Dickenberechnung entsprechend der Formel <signal B>) <signal A> unter der Bedingung, dass Signal B größer ist als Signal A
- COPY: Dupliziert ein Signal; die Wirkung l\u00e4sst sich auch mit dem Kommando CALC erzielen, z. B. mit (1 * <signal>)
 + (0 * <signal>) + 0
- NONE: löscht einen Berechnungsblock

A 5.3.11.13 Liste möglicher Berechnungssignale

META_COMP

Listet alle möglichen Signale auf, die in der Verrechnung verwendet werden können.

A 5.3.11.14 Zweipunktskalierung Datenausgänge

SYSSIGNALRANGE <Bereichsbeginn> <Bereichsende>

Die ermittelten Werte aus der Verrechnung können größer sein, als die Werte, die der Controller darstellen kann. Mit diesem Befehl wird der Wertebereich festgelegt.

Default ist 0 bis 10 mm

A 5.3.12 Datenausgabe

A 5.3.12.1 Auswahl Digitalausgang

OUTPUT [NONE|([RS422 | IE] [ANALOG] [ERROROUT])]

- NONE: Keine Messwertausgabe
- RS422: Ausgabe der Messwerte über RS422
- IE: Ausgabe der Messwerte über Industrial Ethernet, parallel mit RS422 ist möglich
- ANALOG: Ausgabe der Messwerte über den Analogausgang
- ERROROUT: Error- oder Zustandsinformationen über die Errorausgänge

Kommando startet die Messwertausgabe. Die Verbindung zum Messwertserver kann bereits bestehen oder nun hergestellt werden.

A 5.3.12.2 Ausgabe-Datenrate

```
OUTREDUCEDEVICE [NONE | ([RS422] | [ANALOG])]
```

Reduzierung der Messwertausgabe über die angegebenen Schnittstellen.

- NONE: Keine Reduzierung der Messwertausgabe
- RS422: Reduzierung der Messwertausgabe über RS422
- ANALOG: Reduzierung der Messwertausgabe über analoge Schnittstelle

A 5.3.12.3 Reduzierungszähler Messwertausgabe

OUTREDUCECOUNT <Anzahl>

Reduzierungszähler der Messwertausgabe.

Nur jeder n-te Messwert wird ausgegeben. Die anderen Messwerte werden verworfen.

- Anzahl: 1...3000000 (1 bedeutet alle frames)

A 5.3.12.4 Fehlerbehandlung

OUTHOLD NONE | INFINITE | <Anzahl>

Einstellen des Verhaltens der Messwertausgabe im Fehlerfall.

- NONE: Kein Halten des letzten Messwertes, Ausgabe des Fehlerwertes
- INFINITE: Unendliches Halten des letzten Messwertes
- Anzahl: Halten des letzten Messwertes über Anzahl Messzyklen und danach Ausgabe des Fehlerwertes (maximal 1024)

A 5.3.13 Auswahl der auszugebenden Messwerte

A 5.3.13.1 Allgemein

Einstellung der auszugebenden Werte über die RS422-Schnittstelle.

Eine Begrenzung der Datenmenge über die RS422 ist abhängig von der Messfrequenz und der Baudrate.

Im Modus Mehrschichtmessung können beliebige Abstände und Differenzen für die Ausgabe ausgewählt werden.

A 5.3.13.2 Datenauswahl für RS422

OUT_RS422

Beschreibt, welche Daten über diese Schnittstelle ausgegeben werden.

A 5.3.13.3 Liste der mögliche Signale für RS422

META OUT RS422

Liste der möglichen Daten für die RS422.

A 5.3.13.4 Liste der ausgewählten Signale, Reihenfolge über RS422

GETOUTINFO_RS422

Gibt die Reihenfolge der Signale über diese Schnittstelle wieder.

A 5.3.14 Schaltausgänge

A 5.3.14.1 Allgemein

Befehle sind gültig für den IFD2410/2415.

A 5.3.14.2 Error-Schaltausgänge

```
ERROROUT1 [01ER1|01ER2|01ER12|ERRORLIMIT]
ERROROUT2 [01ER1|01ER2|01ER12|ERRORLIMIT]
```

Einstellen der Fehler-Schaltausgänge.

- 01ER1: Schaltausgang wird bei einem Intensitätsfehler geschaltet
- 01ER2: Schaltausgang wird bei einem Messbereichsfehler geschaltet
- 01ER12: Schaltausgang wird bei einem Intensitätsfehler oder einem Messbereichsfehler geschaltet
- ERRORLIMIT: Schaltausgang wird bei Messwert ist außerhalb der Grenzwerte geschaltet; Basis sind die Einstellungen für ERRORLIMITSIGNAL1/2, ERRORLIMITCOMPARETO1/2 und ERRORLIMITVALUES1/2

A 5.3.14.3 Liste der möglichen Signale für den Errorausgang

META_ERRORLIMITSIGNAL1

META ERRORLIMITSIGNAL2

Liste mit allen möglichen Signalen, die für den Befehl ERRORLIMITSIGNALn möglich sind.

A 5.3.14.4 Setzen des auszuwertenden Signales

ERRORLIMITSIGNAL1 [<signal>]

```
ERRORLIMITSIGNAL1 [<signal>]
```

Auswahl des Signals, das für die Grenzwertbetrachtung verwendet werden soll.

A 5.3.14.5 Setzen der Grenzwerte

ERRORLIMITCOMPARETO1 [LOWER | UPPER |BOTH] ERRORLIMITCOMPARETO2 [LOWER | UPPER |BOTH]

Gibt an, ob der Ausgang aktiv schalten soll bei

- LOWER --> Unterschreitung
- UPPER --> Überschreitung
- BOTH --> Unter- oder Überschreitung

A 5.3.14.6 Setzen des Wertes

ERRORLIMITVALUES1 [<lower limit [mm]> <upper limit [mm]>] ERRORLIMITVALUES2 [<lower limit [mm]> <upper limit [mm]>]

Setzt die Werte für die Grenzwerte Lower und Upper.

- <lower limit [mm]> = -2147.0 ... 2147.0
- <upper limit [mm]> = -2147.0 ... 2147.0

A 5.3.14.7 Schaltverhalten der Fehlerausgänge

ERRORLEVELOUT1 [PNP|NPN|PUSHPULL|PUSHPULLNEG]

ERRORLEVELOUT2 [PNP|NPN|PUSHPULL|PUSHPULLNEG]

Schaltverhalten der Fehlerausgänge Error 1 und Error 2.

- PNP: Schaltausgang ist High bei Fehler und offen ohne Fehler
- NPN: Schaltausgang ist Low bei Fehler und offen ohne Fehler
- PUSHPULL: Schaltausgang ist High bei Fehler und Low ohne Fehler
- PUSHPULLNEG: Schaltausgang ist Low bei Fehler und High ohne Fehler

A 5.3.14.8 Schalthysterese der Fehlerausgänge

ERRORHYSTERESIS1 <hysteresis [mm]> ERRORHYSTERESIS2 <hysteresis [mm]>

Setzt die Hysterese für die Schaltausgänge, siehe auch die Funktion ERRORLIMIT.

- <hysteresis [mm]> = (0..2) * measurement range [mm]

A 5.3.15 Analogausgang

A 5.3.15.1 Datenauswahl

ANALOGOUT Signal

Auswahl des Signals, das über den Analogausgang ausgegeben werden soll. Als Parameter wird das Signal angegeben. Eine Liste mit den möglichen Signalen ist mit META_ANALOGOUT zu sehen, siehe Kap. A 5.3.15.2.

A 5.3.15.2 Liste der möglichen Signale für den Analogausgang

META_ANALOGOUT

Listet alle Signale, die auf den Analogausgang gelegt werden können.

A 5.3.15.3 Ausgabebereich

ANALOGRANGE 0-5V | 0-10V | 4-20mA

- 0-5 V: Der Analogausgang gibt eine Spannung von 0 bis 5 Volt aus.
- 0-10 V: Der Analogausgang gibt eine Spannung von 0 bis 10 Volt aus.
- 4-20mA: Der Analogausgang gibt eine Stromstärke von 4 bis 20 Milliampere aus.

A 5.3.15.4 Einstellung der Skalierung des DAC

ANALOGSCALEMODE STANDARD | TWOPOINT

Trifft die Auswahl über eine Verwendung der Einpunkt- oder Zweipunktskalierung des Analogausgangs.

- STANDARD --> Einpunktskalierung

- TWOPOINT --> Zweipunktskalierung

Die Standard-Skalierung ist für Abstände -MB/2 bis MB/2 und für Dickenmessung auf 0 bis 2 MB (MB=Messbereich) ausgelegt.

Der minimale und maximale Messwert muss in Millimetern angegeben werden. Der verfügbare Ausgabebereich des Analogausgangs wird dann zwischen dem minimalen und maximalen Messwert gespreizt. Der minimale und maximale Messwert muss zwischen -2147.0 und 2147.0 liegen.

Der minimale und maximale Messwert wird mit drei Nachkommastellen verarbeitet.

A 5.3.15.5 Einstellung des Skalierungsbereiches

```
ANALOGSCALERANGE <limit 1> <limit 2>
```

Die Zweipunktskalierung erfordert die Angabe von Bereichsanfang und -ende in Millimetern.

- limit 1> = (-2147.0 ... 2147.0) [mm], and different from <limit 2>.

- limit 2> = (-2147.0 ... 2147.0) [mm], and different from <limit 1>.

Die Werte dürfen nicht identisch sein.

A 5.3.16 Systemeinstellungen

A 5.3.16.1 Tastensperre

KEYLOCK NONE | ACTIVE | (AUTO [<value>])

Auswahl der Tastensperre.

- NONE: Taste funktioniert ständig, keine Tastensperre
- ACTIVE: Tastensperre wird sofort nach Neustart aktiviert
- AUTO: Tastensperre wird erst <time> Minuten nach Neustart aktiviert, Wertebereich 1 ... 60 min

A 5.4 Messwert-Format

A 5.4.1 Aufbau

Der Aufbau von Messwert-Frames hängt von der Auswahl der Messwerte ab bzw. von der Wahl eines Presets. In der nachfolgenden Übersicht finden Sie eine Zusammenfassung an Kommandos, mit denen Sie die verfügbaren Messwerte über RS422 abfragen können.

Kap. A 5.3.13.2	OUT_RS422	Datenauswahl für RS422
Kap. A 5.3.13.3	META_OUT_RS422	Liste möglicher Signale RS422
Kap. A 5.3.13.4	GETOUTINFO_RS422	Liste ausgewählter Signale, Reihenfolge über RS422

Beispiele für die Struktur eines Datenblocks, Abfrage mit Telnet:

Preset Standard matt	Preset Multisurface
->META_OUT_RS422	->META_OUT_RS422
META_OUT_RS422 01RAW 01DARK 01LIGHT 01SHUTTER 01ENCODER1 01INTENSITY 01SYMM 01DIST1 MEASRATE TRIGTIMEDIFF TIMESTAMP TIMESTAMP_HIGH TIMESTAMP_LOW COUNTER 01DIST1_MIN 01DIST1_PEAK 01DIST1_MAX ->	META_OUT_RS422 01RAW 01DARK 01LIGHT 01SHUTTER 01ENCODER1 01INTENSITY 01SYMM 01DIST1 01DIST2 01DIST3 MEASRATE TRIGTIMEDIFF TIMESTAMP TIMESTAMP_HIGH TIMESTAMP_LOW COUNTER Ch01Thick12 Ch01Thick23 ->
->GETOUTINFO_RS422	->GETOUTINFO_RS422
GETOUTINFO_RS422 01SHUTTER 01INTENSITY1 01DIST1 ->	GETOUTINFO_RS422 01SHUTTER 01INTENSITY1 01DIST1 01INTENSITY2 01DIST2 01INTENSITY3 01DIST3 Ch01Thick12 Ch01Thick23 ->

Ein Messwert-Frame ist dynamisch aufgebaut, d.h. nicht ausgewählte Werte werden nicht übertragen.

A 5.4.2 Videosignal

Es können die Videosignale übertragen werden, die im Signalverarbeitungsprozess berechnet wurden. Ein Videosignal umfasst 512 Pixel. Ein Pixel wird durch einen 16 Bit-Wort beschrieben. Der genutzte Wertebereich ist 0...16383.

Es gibt fünf zugängliche Videosignale:

- Rohsignal
- Dunkelkorrigiertes Signal
- Hellkorrigiertes Signal

Die Dunkelwertetabelle und die Hellwertetabelle können Sie mit den Kommandos DARKCORR PRINT bzw. LIGHTCORR PRINT abfragen.

Pixel 0	Pixel 1	 Pixel 511
Rohsignal, 16 Bit	Rohsignal	Rohsignal
Dunkelkorrigiertes Signal, 16 Bit	Dunkelkorrigiertes Signal	 Dunkelkorrigiertes Signal
Hellkorrigiertes Signal, 16 Bit	Hellkorrigiertes Signal	Hellkorrigiertes Signal

Abb. 83 Datenstruktur der Videosignale

A 5.4.3 Belichtungszeit

Die Ausgabe der Belichtungszeit über die RS422-Schnittstelle erfolgt mit einer Auflösung von 100 ns. Das Datenwort ist 18 Bit breit.

A 5.4.4 Encoder

Die Encoderwerte zur Übertragung können einzeln ausgewählt werden. Bei der Übertragung über RS422 werden nur die unteren 18 Bit der Encoderwerte übertragen.

A 5.4.5 Messwertzähler

Auf der RS422-Schnittstelle werden nur die unteren 18 Bit des Profilzählers übertragen.

A 5.4.6 Zeitstempel

Systemintern beträgt die Auflösung des Zeitstempels 1 µs. Bei der Übertragung über RS422 werden zwei 18 Bit-Datenworte bereitgestellt (TIMESTAMP LOW und TIMESTAMP HIGH).

A 5.4.7 Messdaten (Abstände und Intensitäten)

Es werden für jeden ausgewählten Abstand eine Intensität (sofern ausgewählt) und ein Messwert übertragen.

Bit-Position	Beschreibung
0 - 10	Intensität des Peaks (100 % entsprechen 1024)

Abb. 84 Tabelle Intensität

Bei der Übertragung über RS422 wird Intensität des Peaks mit 10 Bit übertragen.

Der Intensitätswert wird nach folgender Berechnungsvorschrift ermittelt:

Intensität = <u>Max_dark</u> <u>Sättigung - Max_raw + Max_dark</u>

- Max_dark bezieht sich auf das dunkelkorrigierte Signal.
- Max_raw bezieht sich auf das Rohsignal.
- Sättigung bezieht sich auf den AD-Bereich (2¹⁴⁻¹).

Details für das Format für RS422 finden Sie auch im Abschnitt Mess-Datenformate, siehe Kap. A 5.5.1.

A 5.4.8 Triggerzeitdifferenz

Die Triggerzeitdifferenz wird über RS422 als 18 Bit unsigned Integer mit einer Auflösung von 100 ns ausgegeben. Wertebereich 0....100000

A 5.4.9 Differenzen (Dicken)

Berechnete Differenzen zwischen zwei Abständen haben das gleiche Format wie die Abstände.

Es werden zuerst die ausgewählten Differenzen zwischen dem Abstand 1 und den anderen Abständen ausgegeben, danach die von Abstand 2, ...

Details für das Format für RS422 finden Sie auch im Abschnitt Mess-Datenformate, siehe Kap. A 5.5.1.

A 5.4.10 Statistikwerte

Die Statistikwerte haben das gleiche Format wie die Abstände.

Es wird (sofern ausgewählt) zuerst Minimum, dann Maximum und am Ende Peak-zu-Peak übertragen.

A 5.4.11 Peaksymmetrie

Der Peaksymmetriewert wird über RS422 als 18 Bit (signed integer) mit 4 Bit Nachkommastellen ausgegeben.

A 5.5 Mess-Datenformate

A 5.5.1 Datenformat RS422-Schnittstelle

A 5.5.1.1 Videodaten

<preamble></preamble>	<size></size>	<video data=""></video>	<end></end>
Startkennung	Size 32 Bit	16 Bit unsigned	Endkennung
64 Bit	Größe der Videodaten		32 Bit
0xFFFF00FFFF000000	in Byte		0xFEFE0000

Abb. 85 Aufbau eines Videoframes

Datenstruktur siehe Abb. 83.

A 5.5.1.2 Messwerte

Die Ausgabe von Abstands-Messwerten und weiteren Messwerten über RS422 benötigt eine nachfolgende Umrechnung in die entsprechende Einheit. Die Messwertdaten, sofern angefordert, folgen immer einem Videoframe.

Ausgabewert 1:

	Prea	mble	Datenbits					
L-Byte	0	0	D5	D4	D3	D2	D1	D0
M-Byte	0	1	D11	D10	D9	D8	D7	D6
H-Byte	1	0	D17	D16	D15	D14	D13	D12

Ausgabewert 2 ... 32:

	Prea	mble	Datenbits					
L-Byte	0	0	D5	D4	D3	D2	D1	D0
M-Byte	0	1	D11	D10	D9	D8	D7	D6
H-Byte	1	1	D17	D16	D15	D14	D13	D12

Wertebereiche für die Abstands- und Dickenmessung:

131000 = Messbereichsmitte für die Abstandsmessung

MB = Messbereich

Die linearisierten Messwerte können nach der folgenden Formel in Millimeter umgerechnet werden:

$$x = \frac{(d_{\rm OUT} - 98232) * MB}{65536}$$

x = Abstand / Dicke in mm $d_{\text{OUT}} = \text{digitaler Ausgabewert}$

MB = Messbereich in mm

Alle Werte größer als 262072 sind Fehlerwerte und sind wie folgt definiert:

Fehler-Code	Beschreibung
262073	Skalierungsfehler RS422-Schnittstelle Unterlauf
262074	Skalierungsfehler RS422-Schnittstelle Überlauf
262075	Zu große Datenmenge für gewählte Baudrate ¹
262076	Es ist kein Peak vorhanden.
262077	Peak liegt vor dem Messbereich (MB)
262078	Peak liegt hinter dem Messbereich (MB)
262079	Messwert kann nicht berechnet werden

Für alle anderen Datenausgaben außer den Messwertdaten sind die Einschränkungen in den entsprechenden Abschnitten definiert.

1) Dieser Fehler tritt auf, wenn mehr Daten ausgegeben werden sollen, als mit gewählter Baudrate bei gewählter Messfrequenz übertragen werden können. Um den Fehler zu beheben, gibt es folgende Möglichkeiten:

- Baudrate erhöhen, siehe Kap. A 5.3.7
- Messfrequenz verringern, siehe Kap. A 5.3.9.5
- Datenmenge verringern; wenn 2 Datenworte ausgewählt wurden, auf ein Datenwort reduzieren, siehe Kap. A 5.3.13
- Ausgabe-Datenraterate reduzieren, siehe Kap. A 5.3.12.2

A 5.6 Warn- und Fehlermeldungen

E200 I/O operation failed E202 Access denied E204 Received unsupported character E205 Unexpected quotation mark E210 Unknown command E212 Command not available in current context E214 Entered command is too long to be processed E230 Unknown parameter E231 Empty parameters are not allowed E232 Wrong parameter count E233 Command has too many parameters E234 Wrong or unknown parameter type E236 Value is out of range or the format is invalid E262 Active signal transfer, please stop before E270 No signals selected E272 Invalid combination of signal parameters, please check measure mode and signal selection E276 Given signal is not selected for output E277 One or more values were unavailable. Please check output signal selection E281 Not enough memory available E282 Unknown output signal E283 Output signal is unavailable with the current configuration E284 No configuration entry was found for the given signal E285 Name is too long E286 Names must begin with an alphabetic character, and be 2 to 15 characters long. Permitted characters are: a-zA-Z0-9 E320 Wrong info-data of the update E321 Update file is too large E322 Error during data transmission of the update E323 Timeout during the update E324 File is not valid for this sensor E325 Invalid file type E327 Invalid checksum E331 Validation of import file failed E332 Error during import E333 No overwrite during import allowed E340 Too many output values for RS422 selected E350 The new passwords are not identical E351 No password given E360 Name already exists or not allowed E361 Name begins or ends with spaces or is empty E362 Storage region is full E363 Setting name not found

E364 Setting is invalid E500 Material table is empty E502 Material table is full E504 Material name not found E600 ROI begin must be less than ROI end E602 Master value is out of range E603 One or more values were out of range E610 Encoder: minimum is greater than maximum E611 Encoder's start value must be less than the maximum value E615 Synchronization as slave and triggering at level or edge are not possible at the same time E618 Sensor head not available E621 The entry already exists E622 The requested dataset/table doesn't exist.

W505 Refractivity correction deactivated, vacuum is used as material

W526 Output signal selection modified by the system

W528 The shutter time has been changed to match the measurement rate and the system requirements.

W530 The IP settings has been changed.

A 6 Telnet

A 6.1 Allgemein

Der Telnet-Dienst ermöglicht Ihnen das Kommunizieren mit dem IFD241x vom PC aus. Für die Kommunikation mit Telnet benötigen Sie

- eine Verbindung zwischen IFD241x und Ihrem PC,
 - Ethernet
 - RS442-Kommunikation
- die ASCII-Befehle, siehe Kap. A 5.

A 6.2 Verbindungsaufbau

- Starten Sie das Programm Telnet.exe über das Startmenü > Ausführen.
- Tippen Sie den Befehl o 192.254.168.150 bzw. der IP-Adresse des Controllers ein.

🕂 Telnet 169.254.168.150	- 0	×
->getinfo		î
Name: Serial: Option: Article: MAC-Address: Version: Hardware-rev: BuildID: Output-variant: ->	IFD2415-3/IE 1022080001 000 2612027 00-0C-12-01-E2-0C 004.004 01 57 IE-setup	
		~

Abb. 86 Telnet Start-Bildschirm des IFD241x

Ein Befehl besteht immer aus dem Befehlsnamen und Null oder mehreren Parametern, die durch Leerzeichen getrennt sind. Der aktuell eingestellte Parameterwert wird zurückgegeben, wenn ein Befehl ohne Parameter aufgerufen wird.

Das Ausgabe-Format ist:

```
<Befehlsname> <Parameter1> [<Parameter2> [...]]
```

Der zurückerhaltene Befehl kann ohne Änderungen wieder für das Setzen des Parameters verwendet werden. Nach der Verarbeitung eines Befehls wird immer ein Zeilenumbruch und ein Prompt zurückgegeben ("->"). Im Fehlerfall steht vor dem Prompt eine Fehlermeldung welche mit Exx beginnt, wobei xx für eine eindeutige Fehlernummer steht.

- Wird nach dem Senden der IP-Adresse kein Verbindungsaufbau bestätigt, senden Sie ein c für Schließen der Ver-
- l bindung. Senden Sie nun erneut das Kommando o 192.254.168.150 für den Verbindungsaufbau.

A 6.3 Hilfe zu einem Befehl

Telnet kann Informationen zu einem Befehl ausgeben. Geben Sie dazu die Sequenz "HELP <Befehlsname>" ein.

Abb. 87 Abruf der Information zu dem Befehl TRIGGERSOURCE

A 6.4 Fehlermeldungen

Folgende Fehlermeldungen können auftreten:

- E01 Unbekanntes Kommando: Es wurde eine unbekannte Parameter-ID übergeben.
- E06 Zugriff verweigert: Auf diesen Parameter kann momentan nicht zugegriffen werden. Eventuell ist der Controller nicht im Experten-Mode oder der Parameter ist durch andere Einstellungen nicht sichtbar.
- E08 Unbekannter Parameter: Es wurden zu wenig Parameter übergeben.
- E11 Der eingegebene Wert liegt außerhalb des Gültigkeitsbereichs, bzw. das Format ist ungültig: Der übergebene Wert liegt außerhalb des Gültigkeitsbereiches.

Der Text der Fehlermeldungen hängt von der eingestellten Sprache ab. Die Kennung der Fehlermeldung (Exx) ist für jede Sprache die gleiche.

A 7 DHCP-Server, IP-Zuweisung

Ein IFD241x mit EtherNet/IP wird im DHCP-Betrieb ausgeliefert. Es ist ein DHCP-Server erforderlich, um dem Messsystem eine IP-Adresse zuzuweisen.

Die nachfolgenden Schritte zeigen exemplarisch eine Adresszuweisung. Die Freeware ist in dem Paket DHCP Server V2.5.2 enthalten. Ein freier Download ist unter folgender Adresse möglich: https://www.dhcpserver.de/cms/download/.

- Sie benötigen für die Ausführung dieses Programms Admin-Rechte.
- 1 Starten Sie dieses Programm ausschließlich von einer lokalen Festplatte.

Verbinden Sie den Sensor mit Ihrem PC/Notebook.

Starten Sie das Programm dhcpwiz.exe.

Welcome to the DHC	P configuration wizard	\times	Network Interface cards			×
r <u>"</u>	Welcome to the DHCP configuration wizard		Please select the network card you	want to run the DHCP ser	ver on:	
E E			Name	IP-Address	DHCP	
	The DHCP configuration witard will help you to configure the DHCP server. Please press next to start the configuration.		OpenVPN TAP-Windows6 OpenVPN Wintun Eltemet 4 Eltemet 3 MSC Sensor Elhemet	0.0.0.0 0.0.0.0 169,254,239,2 0.0.0.0 0.0.0 10.1.28,232	Enabled Disabled Enabled Enabled Disabled Enabled	
	Written by Uwe A. Huttkamp		It is not recommended to run DHCP which already has DHCP enabled.	P server on a network can		Refresh
	< Zurück Weiter > A	bbrechen		< Zurück	Weiter >	Abbrechen

Der Assistent listet alle verfügbaren Netzwerkanschlüsse.

Wählen Sie den Netzwerkanschluss aus, an dem Ihr Messsystem angeschlossen ist. Bestätigen Sie mit Weiter.

Die nachfolgende Abfrage zu den unterstützten Protokollen können Sie ohne eine Angabe überspringen.

Confi	iguring DHCP for Int	erface	Х
	Network Interface D	efinition	
	Name:	Ethemet 3	
	IP Address:	169.254.0.2	
	Configuration		
	IP-Pool:	169 . 254 . 0 . 10 - 255	
	Lease Time:	1 Day	
	Delete expired lea	ases in intervals of 3600 seconds	
	✓ Trace		
		DHCP Options Advanced	
		< Zurück Weiter > Abbreche	n

Definieren Sie im Feld Configuration den möglichen Bereich für die IP-Adressen.

Ein Client bekommt aus diesem Bereich eine IP-Adresse zugewiesen.

Writing the INI file	Writing the INI file			
You are now ready to write the INI file. Please hit finish to complete the configuration. After that you can run the dhopsrv.exe program to execute the DHCP server.	You are now ready to write the INI file. Please hit finish to complete the configuration. After that you can run the dhcpsrv.exe program to execute the DHCP server.			
INI File: temp\Tools EtherNet_IP ILd1900\EIP Tools\dhcpsrv2.5.2\dhcpsrv in		INI File: temp\Tools EtherNet_IP ILd1900\EIP Tools\dhcpsrv2.5.2\dhcpsrv.in		
INI File content:		INI File content:		
[SETTINGS] ^ IPPOOL 1-169.254.0.10-255 IPBIND_1=169.254.0.2 AssociateBinds ToPools=1 Trace=1 DeleteOnRelease=0 ExpiredLeaseTimeout=3600 [GENERAL]		[SETTINGS] ^ IPPOL_1=169.254.0.10-255 IPBIND_1=169.254.0.2 AssociateBndsToPools=1 Trace-1 Trace-0 ExpiredLeaseTimeout=3600 [GENERAL]		
Overwrite existing file Write INI file		Overwrite existing file INI file successfully written Write INI file		
< Zurück Weiter > Abbr	rechen	< Zurück Weiter > Abbrea	chen	

INI file. Wählen Sie das Feld Overwrite existing file und klicken Sie auf die Schaltfläche Write INI file.

Unterbrechen Sie die Spannungsversorgung zum Messsystem; verbinden Sie anschließend das Messsystem wieder mit der Spannungsversorgung. Sie erzwingen damit einen Neustart des Messsystems.

Das angeschlossene Messsystem ist entsprechend diesem Beispiel unter der IP-Adresse 169.254.0.10 zu erreichen.

ICP configuration complet	ed	X DHCP Server	– 🗆 X
You are now ready to start t a Windows service and it is communications of the DHO	the DHCP server. You have the option to run the server as recommended to add firewall exceptions to enable all CP server.	Welcome to the DHCP Serve written by Uwe A. Ruttkamp	r V2523
Service	Firewall exceptions	Service	Firewall exceptions
Install	Configure	Install	Configure
Remove	Remove	Remove	Remove
Start		Start	
Stop	Firewall enabled	Stop	₩ Firewall enabled
Status: Running	Status: Not configured	Status: Running	Status: Not configured
Run DHCP server imme	diatty	Don't show this window next time	💡 Admin
	< Zurück Fertig stellen Abbred	hen Continue as tray app	p. Exit

Klicken Sie auf die Schaltfläche Fertig stellen, um den Assistenten zu beenden.

Wenn Sie die Option Run DHCP server immediatly ausgewählt haben, startet anschließend das Programm DHCP Server (dhcpsrv.exe) automatisch.

Eine erfolgreiche Konfiguration meldet das Feld Status mit dem Eintrag Running.

A 8 Dokumentation der Parameter

IFD2410, IFD2411, IFD2415

Index	Objektname	Instanz-ID	Subindex	Subobjektname	Zugriff	Datentyp	IFD2410	2411	2415
0x0001	Identity	1	0	Reset	read-write	UINT8			
		1	1	Vendor ID	read-only	UINT16	1		
		1	2	Device Type	read-only	UINT16	1		
		1	3	Product code	read-only	UINT16			
		1	4	Revision	read-only	UINT16	x	x	x
		1	5	Status	read-only	UINT16			
		1	6	Serial Number	read-only	UINT32	1		
		1	7	Prodct name	read-only	CHAR	1		
		1	8	State	read-only	UINT8			
0x0004	Assembly Object	102	3	Assembly Object Data	read-write	Activation UINT8,			
						Oversampling UINT8,			
						Channel 1 distance 1 UINT8,	x	x	x
						Channel 1 distance 2 UINT8,			
						Channel 1 distance 3 UINT8,			
						Channel 1 distance 4 UINT8,			
						Channel 1 distance 5 UINT8.			x
						Channel 1 distance 6 UINT8.			
						Channel 1 intensity 1 UINT8.			
						Channel 1 intensity 2 UINT8	x	х	x
						Channel 1 intensity 2 UNIT9			
						Channel 1 intensity 5 UINTS,			
						Channel 1 Intensity 4 UINT8,			x
						Channel 1 Intensity 5 UINT8,			
					Channel 1 shutter UIN18,				
						Channel 1 encoder 1 UINT8,	x	x	x
						Channel 1 encoder 2 UINT8,			
						Channel 1 encoder 3 UINT8,			
						Channel 1 peak symmetry 1 UINT8,			
						Channel 1 peak symmetry 2 UINT8,			
						Channel 1 peak symmetry 3 UINT8,			x
						Channel 1 peak symmetry 4 UINT8,			
						Channel 1 peak symmetry 5 UINT8,			
						Channel 1 peak symmetry 6 UINT8,			
						Counter UINT8,			
						Time stamp UINT8,	x	х	х
						Frequency UINT8,			
						User calc output 01 UINT8,			
						User calc output 02 UINT8,			
						User calc output 03 UINT8,			
						User calc output 04 UINT8,			
							x	x	×
						User calc output 17 UINT8,			
						User calc output 18 UINT8,			
						User calc output 19 UINT8			
		102	4	Assembly Object Size	read-only	UINT16	x	х	x

Index	Objektname	Instanz-ID	Subindex	Subobjektname	Zugriff	Datentyp	IFD2410	2411	2415
0x0043	Time Sync	1	768	Time Sync Parameters	read-write	sync0_interval UINT32,			
						sync0_offset UINT32,			
						sync1 interval UINT32,	×	x	×
						sync1 offset UINT32.	~	~	, n
						nulse length LIINT32			
0.00004	Courses information	1	0	Hardwara varsian	road only				
UXUU64	Sensor information	1	256		read-only		x		x
		1	230 E12	Namo	read-only				
		1	512	Name Coriol number	read-only				
		1	510	Ontion number	read-only			x	
		1	517	Article number	read-only				
		1	769	Error number	read-only				
		1	700		read-only				
0.0070	C	1	769		read-only				
0x0070	Settings	1	0	Actual user	read-only				
		1	1	Login	write-only	STRING(32)			
		1	2	Logout	write-only	BII			
		1	3	User level when restarting	read-write				
		1	4	Password old	write-only	STRING(32)			
		1	5	Password new	write-only	STRING(32)	-		
		1	6	PasswordRepeat	write-only	STRING(32)			
		1	256	Read	write-only	BII			
		1	257	Store	write-only	BIT			
		1	258	Set default	write-only	BIT			
		1	512	Mode	read-write	UINT8			
		1	513	List	read-only	STRING(235)			
		1	514	Named read	write-only	STRING(32)			
		1	768	Current	read-only	STRING(32)	x	x	х
		1	769	Named read	write-only	STRING(32)			
		1	770	Named store	write-only	STRING(32)			
		1	771	Named delete	write-only	STRING(32)			
		1	772	Initial	read-write	STRING(32)			
		1	773	List	read-only	STRING(235)			
		1	774	Set default	write-only	BIT			
		1	1024	Reboot sensor	write-only	BIT			
		1	1280	Factory reset	write-only	BIT			
		1	1536	Reset timestamp	write-only	BIT			
		1	1537	Reset counter	write-only	BIT			
		1	8192	Measuring rate	read-write	FLOAT			
		1	8448	Mode	read-write	UINT8			
		1	8449	Key lock countdown [min]	read-write	UINT8			
Index	Objektname	Instanz-ID	Subindex	Subobjektname	Zugriff	Datentyp	IFD2410	2411	2415
----------	------------	------------	----------	----------------------------	-----------------	-------------	---------	------	------
0x0070	Settings	1	8704	Encoder 1 reference signal	read-write	UINT8			
		1	8705	Encoder 1 interpolation	read-write	UINT8	1		
		1	8706	Encoder 1 initial value	read-write	UINT32	x	х	x
		1	8707	Encoder 1 maximum value	read-write	UINT32			
		1	8708	Encoder 1 set value	write-only	BIT			
		1	8709	Encoder 2 reference signal	read-write	UINT8			
		1	8710	Encoder 2 interpolation	read-write	UINT8	1		
		1	8711	Encoder 2 initial value	read-write	UINT32			
		1	8712	Encoder 2 maximum value	read-write	UINT32			
		1	8713	Encoder 2 set value	write-only	BIT	x		x
		1	8714	Encoder 3 interpolation	read-write	UINT8			
		1	8715	Encoder 3 initial value	read-write	UINT32			
		1	8716	Encoder 3 maximum value	read-write	UINT32			
		1	8717	Encoder 3 set value	write-only	BIT			
		1	8718	Encoder count	read-write	UINT8			
		1	8719	Set encoder	write-only	UINT8			
		1	8720	Reset encoder	write-only	UINT8			
		1	8960	Trigger At	, read-write	UINT8			
		1	8961	Trigger source	read-write	UINT8			
		1	8962	Trigger mode	read-write	UINT8			
		1	8963	Trigger level	read-write	UINT8			
		1	8964	Trigger count type	read-write	UINT8			
		1	8965	Trigger count value	read-write	UINT16			
		1	8966	Trigger software	write-only	BIT			
		1	8967	Trigger endcoder minimum	read-write	UINT32			
		1	8968	Trigger encoder maximum	read-write	UINT32			
		1	8969	Trigger encoder step size	read-write	UINT32			
		1	8970	MFI level	read-write	UINT8			
		1	9216	Sync mode	read-write	UINT8			
		1	9217	Termination	read-write	BIT			
		1	12288	Name	read-write	STRING(32)	x	х	x
		1	12289	Description	read-write	STRING(64)			
		1	12290	Type of refraction	read-write	UINT8			
		1	12291	nd value	read-write	FLOAT			
		1	12292	nF value	read-write	FLOAT			
		1	12293	nC value	read-write	FLOAT	1		
		1	12294	Abbe number	read-write	FLOAT			
		1	12544	Material delete	write-only	STRING(32)			
		1	12545	Reset materials	write-only	BIT			
		1	12546	New material	write-only	BIT	1		
		1	12547	Select material for edit	, read-write	STRING(32)	1		
		1	12800	Existing materials part 0	read-only	STRING(235)			
		1	12801	Existing materials part 0	read-only	STRING(235)			
		1	12802	Existing materials part 1	read-only	STRING(235)			
		1	12803	Existing materials part 2	read-only	STRING(235)			
		1	12804	Existing materials part 4	read-only	STRING(235)			
<u> </u>		-	12004						

Index	Objektname	Instanz-ID	Subindex	Subobjektname	Zugriff	Datentyp	IFD2410	2411	2415
		1	16384	Range lower	read-write	FLOAT			
0x0070	Settings	1	16385	Range upper	read-write	FLOAT	x	X	X
0x0080	Channel settings	1	0	LED on/off	read-write	BIT			
		1	1	LED source	read-write	UINT8			
		1	4096	Sensor info	read-only	STRING(32)			
		1	4097	Sensor range	read-only	FLOAT			
		1	4098	Sensor serial No	read-only	UINT32			
		1	8192	Dark correction start	write-only	BIT			
		1	8194	Dark correction state	read-only	UINT32			
		1	12288	Peak count	read-write	UINT32			
		1	12289	Disable refractivity correction	read-write	BIT	v	v	v
		1	16384	Peak position	read-write	UINT8	~	~	
		1	16640	Minimum threshold	read-write	FLOAT			
		1	16641	Peak modulation	read-write	FLOAT			
		1	20480	Material 1	read-write	STRING(32)			
		1	24576	Shutter mode channel 1	read-write	UINT8			
		1	24578	Shutter value1 in us channel 1	read-write	FLOAT			
		1	24579	Shutter value2 in us channel 1	read-write	FLOAT			
		1	28682	Range of interest start	read-write	UINT16			
		1	28683	Range of interest end	read-write	UINT16			
		1	4352	Select sensor head	read-write	UINT8			
		1	4353	Sensor name	read-only	STRING(35)			
		1	4354	Measurement range	read-only	FLOAT			
		1	4355	Serial number	read-only	STRING(39)			
		1	4608	Position	read-write	UINT8			
		1	4609	Get next position	write-only	BIT		х	
		1	4610	Get previous position	write-only	BIT			
		1	4010	Sonsor namo	road only				
		1	4011	Moscurement range	read-only				
			4012		read-only				
			4613		read-only	STRING(39)			
		1	20481	Material 2	read-write	STRING(32)			
		1	20482	Material 3	read-write	STRING(32)			x
		1	20483	Material 4	read-write	STRING(32)			
		1	20484	Material 5	read-write	STRING(32)			

Index	Objektname	Instanz-ID	Subindex	Subobjektname	Zugriff	Datentyp	IFD2410	2411	2415
0x0090	Compute	1	0	Туре	read-write	UINT8			
		1	1	Name	read-write	STRING(32)			
		1	3	Signal1	read-write	STRING(32)			
		1	4	Signal2	read-write	STRING(32)			
		1	12	Factor1	read-write	FLOAT			
		1	13	Factor2	read-write	FLOAT			
		1	16	Offset	read-write	FLOAT			
		1	17	Parameter	read-write	UINT32			
		1	49	Available signals part 0	read-only	STRING(235)			
		1	50	Available signals part 1	read-only	STRING(235)			
		1	51	Available signals part 2	read-only	STRING(235)			
		1	52	Available signals part 3	read-only	STRING(235)			
		1	53	Available signals part 4	read-only	STRING(235)			
		1	54	Available signals part 5	read-only	STRING(235)			
		1	256	Туре	read-write	UINT8			
		1	257	Name	read-write	STRING(32)			
		1	259	Signal1	read-write	STRING(32)			
		1	260	Signal2	read-write	STRING(32)			
		1	268	Factor1	read-write	FLOAT			
		1	269	Factor2	read-write	FLOAT			
		1	272	Offset	read-write	FLOAT			
		1	273	Parameter	read-write	UINT32	x	x	x
		1	305	Available signals part 0	read-only	STRING(235)			
		1	306	Available signals part 1	read-only	STRING(235)			
		1	307	Available signals part 2	read-only	STRING(235)			
		1	308	Available signals part 3	read-only	STRING(235)			
		1	309	Available signals part 4	read-only	STRING(235)			
		1	310	Available signals part 5	read-only	STRING(235)			
		1	512	Туре	read-write	UINT8			
		1	513	Name	read-write	STRING(32)			
		1	515	Signal1	read-write	STRING(32)			
		1	516	Signal2	read-write	STRING(32)			
		1	524	Factor1	read-write	FLOAT			
		1	525	Factor2	read-write	FLOAT			
		1	528	Offset	read-write	FLOAT			
		1	529	Parameter	read-write	UINT32			
		1	561	Available signals part 0	read-only	STRING(235)			
		1	562	Available signals part 1	read-only	STRING(235)			
		1	563	Available signals part 2	read-only	STRING(235)			
		1	564	Available signals part 3	read-only	STRING(235)			
		1	565	Available signals part 4	read-only	STRING(235)			
		1	566	Available signals part 5	read-only	STRING(235)			
1					1				1

Index	Objektname	Instanz-ID	Subindex	Subobjektname	Zugriff	Datentyp	IFD2410	2411	2415
0x0090	Compute	1	768	Туре	read-write	UINT8			
		1	769	Name	read-write	STRING(32)			
		1	771	Signal1	read-write	STRING(32)			
		1	772	Signal2	read-write	STRING(32)			
		1	780	Factor1	read-write	FLOAT			
		1	781	Factor2	read-write	FLOAT			
		1	784	Offset	read-write	FLOAT			
		1	785	Parameter	read-write	UINT32			
		1	817	Available signals part 0	read-only	STRING(235)			
		1	818	Available signals part 1	read-only	STRING(235)			
		1	819	Available signals part 2	read-only	STRING(235)			
		1	820	Available signals part 3	read-only	STRING(235)			
		1	821	Available signals part 4	read-only	STRING(235)			
		1	822	Available signals part 5	read-only	STRING(235)			
		1	1024	Туре	read-write	UINT8			
		1	1025	Name	read-write	STRING(32)			
		1	1027	Signal1	read-write	STRING(32)			
		1	1028	Signal2	read-write	STRING(32)			
		1	1036	Factor1	read-write	FLOAT			
		1	1037	Factor2	read-write	FLOAT			
		1	1040	Offset	read-write	FLOAT	v	v	v
		1	1041	Parameter	read-write	UINT32	^	^	^
		1	1073	Available signals part 0	read-only	STRING(235)			
		1	1074	Available signals part 1	read-only	STRING(235)			
		1	1075	Available signals part 2	read-only	STRING(235)			
		1	1076	Available signals part 3	read-only	STRING(235)			
		1	1077	Available signals part 4	read-only	STRING(235)			
		1	1078	Available signals part 5	read-only	STRING(235)			
		1	1280	Туре	read-write	UINT8			
		1	1281	Name	read-write	STRING(32)			
		1	1283	Signal1	read-write	STRING(32)			
		1	1284	Signal2	read-write	STRING(32)			
		1	1292	Factor1	read-write	FLOAT			
		1	1293	Factor2	read-write	FLOAT			
		1	1296	Offset	read-write	FLOAT			
		1	1297	Parameter	read-write	UINT32			
		1	1329	Available signals part 0	read-only	STRING(235)			
		1	1330	Available signals part 1	read-only	STRING(235)			
		1	1331	Available signals part 2	read-only	STRING(235)			
		1	1332	Available signals part 3	read-only	STRING(235)			
		1	1333	Available signals part 4	read-only	STRING(235)			
L		1	1334	Available signals part 5	read-only	STRING(235)			

Index	Objektname	Instanz-ID	Subindex	Subobjektname	Zugriff	Datentyp	IFD2410	2411	2415
0x0090	Compute	1	1536	Туре	read-write	UINT8			
		1	1537	Name	read-write	STRING(32)			
		1	1539	Signal1	read-write	STRING(32)			
		1	1540	Signal2	read-write	STRING(32)			
		1	1548	Factor1	read-write	FLOAT			
		1	1549	Factor2	read-write	FLOAT			
		1	1552	Offset	read-write	FLOAT			
		1	1553	Parameter	read-write	UINT32			
		1	1585	Available signals part 0	read-only	STRING(235)			
		1	1586	Available signals part 1	read-only	STRING(235)			
		1	1587	Available signals part 2	read-only	STRING(235)			
		1	1588	Available signals part 3	read-only	STRING(235)			
		1	1589	Available signals part 4	read-only	STRING(235)			
		1	1590	Available signals part 5	, read-only	STRING(235)			
		1	1792		read-write	UINT8			
		1	1793	Name	read-write	STRING(32)			
		1	1795	Signal1	read-write	STRING(32)			
		1	1796	Signal2	read-write	STRING(32)			
		1	1804	Factor1	read-write	FLOAT			
		1	1805	Factor2	read-write	FLOAT			
		1	1808	Offset	read-write	FLOAT			
		1	1800	Parameter	read-write		х	х	х
		1	1841	Available signals part 0	read-only	STRING(235)			
		1	18/12	Available signals part 1	read-only	STRING(235)			
		1	18/13	Available signals part 1	read-only	STRING(235)			
		1	18//	Available signals part 3	read-only	STRING(235)			
		1	18/15	Available signals part 3	read-only	STRING(235)			
		1	1845	Available signals part 5	read-only	STRING(235)			
		1	2040		read-write				
		1	2040	Name	read-write				
		1	2049	Signal1	read-write	STRING(32)			
		1	2051	Signal	read-write	STRING(32)			
		1	2052	Signalz Eactor1	read-write				
		1	2000	Factor?	read-write				
		1	2001	Offcet	read-write				
		1	2004	Daramotor	read-write				
		1	2003	Available signals part 0	read only				
		1	2097	Available signals part 1	read only	STRING(235)			
		1	2098	Available signals part 2	read-only	STRING(235)			
		1	2099	Available signals part 2	read only	STRING(235)			
		1	2100	Available signals part 4	read-only				
		1	2101	Available signals part 5	read-only	STRING(235)			
		1	2102		reau-only				

Index	Objektname	Instanz-ID	Subindex	Subobjektname	Zugriff	Datentyp	IFD2410	2411	2415
0x0090	Compute	1	2304	Туре	read-write	UINT8			
		1	2305	Name	read-write	STRING(32)			
		1	2307	Signal1	read-write	STRING(32)			
		1	2308	Signal2	read-write	STRING(32)			
		1	2316	Factor1	read-write	FLOAT			
		1	2317	Factor2	read-write	FLOAT			
		1	2320	Offset	read-write	FLOAT			
		1	2321	Parameter	read-write	UINT32	x	x	X
		1	2353	Available signals part 0	read-only	STRING(235)			
		1	2354	Available signals part 1	read-only	STRING(235)			
		1	2355	Available signals part 2	read-only	STRING(235)			
		1	2356	Available signals part 3	read-only	STRING(235)			
		1	2357	Available signals part 4	read-only	STRING(235)			
		1	2358	Available signals part 5	read-only	STRING(235)			
0x00A0	Processing	1	0	Error handling type	read-write	UINT8			
		1	1	Error handling values	read-write	UINT32			
		1	3840	Master source	read-write	UINT8			
		1	4096	Enable	read-write	BIT			
		1	4097	Signal	read-write	STRING(32)			
		1	4099	Set/Reset	read-write	BIT			
		1	4100	Value	read-write	FLOAT			
		1	4145	Available signals part 0	read-only	STRING(235)			
		1	4146	Available signals part 1	read-only	STRING(235)			
		1	4147	Available signals part 2	read-only	STRING(235)			
		1	4148	Available signals part 3	read-only	STRING(235)			
		1	4149	Available signals part 4	read-only	STRING(235)			
		1	4150	Available signals part 5	read-only	STRING(235)			
		1	4352	Enable	read-write	BIT			
		1	4353	Signal	read-write	STRING(32)			
		1	4355	Set/Reset	read-write	BIT			
		1	4356	Value	read-write	FLOAT	x	x	x
		1	4401	Available signals part 0	read-only	STRING(235)			
		1	4402	Available signals part 1	read-only	STRING(235)			
		1	4403	Available signals part 2	read-only	STRING(235)			
		1	4404	Available signals part 3	read-only	STRING(235)			
		1	4405	Available signals part 4	read-only	STRING(235)			
		1	4406	Available signals part 5	read-only	STRING(235)			
		1	4608	Enable	read-write	BIT			
		1	4609	Signal	read-write	STRING(32)			
		1	4611	Set/Reset	read-write	BIT			
		1	4612	Value	read-write	FLOAT			
		1	4657	Available signals part 0	read-only	STRING(235)			
		1	4658	Available signals part 1	, read-only	STRING(235)			
		1	4659	Available signals part 2	, read-only	STRING(235)			
		1	4660	Available signals part 3	, read-only	STRING(235)			
		1	4661	Available signals part 4	read-only	STRING(235)			
		1	4662	Available signals part 5	read-only	STRING(235)			

Index	Objektname	Instanz-ID	Subindex	Subobjektname	Zugriff	Datentyp	IFD2410	2411	2415
0x00A0	Processing	1	4864	Enable	read-write	BIT			
		1	4865	Signal	read-write	STRING(32)			
		1	4867	Set/Reset	read-write	BIT			
		1	4868	Value	read-write	FLOAT			
		1	4913	Available signals part 0	read-only	STRING(235)			
		1	4914	Available signals part 1	read-only	STRING(235)			
		1	4915	Available signals part 2	read-only	STRING(235)			
		1	4916	Available signals part 3	read-only	STRING(235)			
		1	4917	Available signals part 4	read-only	STRING(235)			
		1	4918	Available signals part 5	read-only	STRING(235)			
		1	5120	Enable	read-write	BIT			
		1	5121	Signal	read-write	STRING(32)			
		1	5123	Set/Reset	read-write	BIT			
		1	5124	Value	read-write	FLOAT			
		1	5169	Available signals part 0	read-only	STRING(235)			
		1	5170	Available signals part 1	read-only	STRING(235)			
		1	5171	Available signals part 2	read-only	STRING(235)			
		1	5172	Available signals part 3	read-only	STRING(235)			
		1	5173	Available signals part 4	read-only	STRING(235)			
		1	5174	Available signals part 5	read-only	STRING(235)			
		1	5376	Enable	read-write	BIT			
		1	5377	Signal	read-write	STRING(32)			
		1	5379	Set/Reset	read-write	BIT	x	x	X
		1	5380	Value	read-write	FLOAT			
		1	5425	Available signals part 0	read-only	STRING(235)			
		1	5426	Available signals part 1	read-only	STRING(235)			
		1	5427	Available signals part 2	read-only	STRING(235)			
		1	5428	Available signals part 3	read-only	STRING(235)			
		1	5429	Available signals part 4	read-only	STRING(235)			
		1	5430	Available signals part 5	read-only	STRING(235)			
		1	5632	Enable	read-write	BIT			
		1	5633	Signal	read-write	STRING(32)			
		1	5635	Set/Reset	read-write	BIT			
		1	5636	Value	read-write	FLOAT			
		1	5681	Available signals part 0	read-only	STRING(235)			
		1	5682	Available signals part 1	read-only	STRING(235)			
		1	5683	Available signals part 2	read-only	STRING(235)			
		1	5684	Available signals part 3	read-only	STRING(235)			
		1	5685	Available signals part 4	read-only	STRING(235)			
		1	5686	Available signals part 5	read-only	STRING(235)			
		1	5888	Enable	read-write	BIT			1
		1	5889	Signal	read-write	STRING(32)			
		1	5891	Set/Reset	read-write	BIT			
		1	5892	Value	read-write	FLOAT			
1									

Index	Objektname	Instanz-ID	Subindex	Subobjektname	Zugriff	Datentyp	IFD2410	2411	2415
0x00A0	Processing	1	5937	Available signals part 0	read-only	STRING(235)			
		1	5938	Available signals part 1	read-only	STRING(235)			
		1	5939	Available signals part 2	read-only	STRING(235)			
		1	5940	Available signals part 3	read-only	STRING(235)			
		1	5941	Available signals part 4	read-only	STRING(235)			
		1	5942	Available signals part 5	read-only	STRING(235)			
		1	6144	Enable	read-write	BIT			
		1	6145	Signal	read-write	STRING(32)			
		1	6147	Set/Reset	read-write	BIT			
		1	6148	Value	read-write	FLOAT			
		1	6193	Available signals part 0	read-only	STRING(235)			
		1	6194	Available signals part 1	read-only	STRING(235)			
		1	6195	Available signals part 2	read-only	STRING(235)			
		1	6196	Available signals part 3	read-only	STRING(235)			
		1	6197	Available signals part 4	read-only	STRING(235)			
		1	6198	Available signals part 5	read-only	STRING(235)			
		1	6400	Enable	read-write	BIT			
		1	6401	Signal	read-write	STRING(32)			
		1	6403	Set/Reset	read-write	BIT			
		1	6404	Value	read-write	FLOAT			
		1	6449	Available signals part 0	read-only	STRING(235)			
		1	6450	Available signals part 1	read-only	STRING(235)	x	х	х
		1	6451	Available signals part 2	read-only	STRING(235)			
		1	6452	Available signals part 3	read-only	STRING(235)			
		1	6453	Available signals part 4	read-only	STRING(235)			
		1	6454	Available signals part 5	read-only	STRING(235)			
		1	8192	Enable	read-write	ВІТ			
		1	8193	Signal	read-write	STRING(32)			
		1	8195	Infinite	read-write	BIT			
		1	8196	Depth	read-write	UINT16			
		1	8197	Reset	write-only	BIT			
		1	8241	Available signals part 0	read-only	STRING(235)			
		1	8242	Available signals part 1	read-only	STRING(235)			
		1	8243	Available signals part 2	read-only	STRING(235)			
		1	8244	Available signals part 3	, read-only	STRING(235)			
		1	8245	Available signals part 4	, read-only	STRING(235)			
		1	8246	Available signals part 5	read-only	STRING(235)			
		1	8448	Enable	read-write	BIT			
		1	8449	Signal	read-write	STRING(32)			
		1	8451	Infinite	read-write	BIT			
		1	8452	Depth	read-write	UINT16			
		1	8453	Reset	write-only	BIT			
		-	0.00		in the only				

Index	Objektname	Instanz-ID	Subindex	Subobjektname	Zugriff	Datentyp	IFD2410	2411	2415
0x00A0	Processing	1	8497	Available signals part 0	read-only	STRING(235)			
		1	8498	Available signals part 1	read-only	STRING(235)			
		1	8499	Available signals part 2	read-only	STRING(235)			
		1	8500	Available signals part 3	read-only	STRING(235)			
		1	8501	Available signals part 4	read-only	STRING(235)			
		1	8502	Available signals part 5	read-only	STRING(235)			
		1	8704	Enable	read-write	BIT			
		1	8705	Signal	read-write	STRING(32)			
		1	8707	Infinite	read-write	BIT			
		1	8708	Depth	read-write	UINT16			
		1	8709	Reset	write-only	BIT			
		1	8753	Available signals part 0	read-only	STRING(235)			
		1	8754	Available signals part 1	read-only	STRING(235)			
		1	8755	Available signals part 2	read-only	STRING(235)			
		1	8756	Available signals part 3	read-only	STRING(235)			
		1	8757	Available signals part 4	read-only	STRING(235)			
		1	8758	Available signals part 5	read-only	STRING(235)			
		1	12288	User calc 00	read-only	STRING(40)			
		1	12289	Liser calc 01	read-only	STRING(40)	x	х	x
		1	12200	User calc 02	read-only	STRING(40)			
		1	12250		read-only	STRING(40)			
		1	12201		read-only	STRING(40)			
		1	12292	User calc 05	read-only	STRING(40)			
		1	12295		read-only	STRING(40)			
			12294		read-only	STRING(40)			
			12295		read-only	STRING(40)			
		1	12290		read-only	STRING(40)			
		1	12297		read-only	STRING(40)			
			12298	User calc 10	read-only	STRING(40)			
			12299	User calc 11	read-only	STRING(40)			
		1	12300	User calc 12	read-only	STRING(40)			
		1	12301	User calc 13	read-only	STRING(40)			
		1	12302	User calc 14	read-only	STRING(40)			
		1	12303	User calc 15	read-only	STRING(40)			
		1	12304	User calc 16	read-only	STRING(40)			
		1	12305	User calc 1/	read-only	STRING(40)			
		1	12306	User calc 18	read-only	STRING(40)			
0x00B0	Outputs	1	0	RS422	read-write	BIT			
		1	2	Analog	read-write	BIT			
		1	3	Error outs	read-write	BIT			
		1	4	Industrial Ethernet	read-write	BIT			
		1	513	Reduction analog	read-write	BIT			1
		1	514	Reduction rs422	read-write	BIT	x	x	x
		1	515	Reduction factor	read-write	UINT32			
		1	8192	Analog output	read-write	UINT8			
		1	8193	Analog signal	read-write	STRING(32)			
		1	8195	Type of scaling	read-write	UINT8			
1		1	8196	Two-Point-scaling start	read-write	FLOAT			

Index	Objektname	Instanz-ID	Subindex	Subobjektname	Zugriff	Datentyp	IFD2410	2411	2415
0x00B0	Outputs	1	8197	Two-Point-scaling end	read-write	FLOAT			
		1	8241	Available signals part 0	read-only	STRING(235)			
		1	8242	Available signals part 1	read-only	STRING(235)			
		1	8243	Available signals part 2	read-only	STRING(235)	х	x	x
		1	8244	Available signals part 3	read-only	STRING(235)			
		1	8245	Available signals part 4	read-only	STRING(235)			
		1	8246	Available signals part 5	read-only	STRING(235)			
		1	16384	Output level	read-write	UINT8			
		1	16385	Error out	read-write	UINT8			
		1	16386	Limit signal	read-write	STRING(32)			
		1	16388	Lower limit value	read-write	FLOAT			
		1	16389	Upper limit value	read-write	FLOAT			
		1	16390	Compare to	read-write	UINT8			
		1	16391	Error hysteresis	read-write	FLOAT			
		1	16433	Available signals part 0	read-only	STRING(235)			
		1	16434	Available signals part 1	read-only	STRING(235)			
		1	16435	Available signals part 2	read-only	STRING(235)			
		1	16436	Available signals part 3	read-only	STRING(235)			
		1	16437	Available signals part 4	read-only	STRING(235)			
		1	16438	Available signals part 5	read-only	STRING(235)			
		1	16640	Output level	read-write	UINT8	x		X
		1	16641	Error out	read-write	UINT8			
		1	16642	Limit signal	read-write	STRING(32)			
		1	16644	Lower limit value	read-write	FLOAT			
		1	16645	Upper limit value	read-write	FLOAT			
		1	16646	Compare to	read-write	UINT8			
		1	16647	Error hysteresis	read-write	FLOAT			
		1	16689	Available signals part 0	read-only	STRING(235)			
		1	16690	Available signals part 1	read-only	STRING(235)			
		1	16691	Available signals part 2	read-only	STRING(235)			
		1	16692	Available signals part 3	read-only	STRING(235)			
		1	16693	Available signals part 4	read-only	STRING(235)			
		1	16694	Available signals part 5	read-only	STRING(235)			
		1	16896	RS422 add output signal	write-only	STRING(32)			
		1	16897	RS422 remove output signal	write-only	STRING(235)			
		1	16898	RS422 reset output signals	write-only	BIT			
		1	16945	RS422 available signals part 0	read-only	STRING(235)			
		1	16946	RS422 available signals part 1	read-only	STRING(235)			
		1	16947	RS422 available signals part 2	read-only	STRING(235)			
		1	16948	RS422 available signals part 3	read-only	STRING(235)	×		
		1	16949	RS422 available signals part 4	read-only	STRING(235)	X	X	×
		1	16950	RS422 available signals part 5	read-only	STRING(235)			
		1	16952	RS422 available signals part 6	read-only	STRING(235)			
		1	16953	RS422 available signals part 7	read-only	STRING(235)			
		1	16954	RS422 available signals part 8	read-only	STRING(235)			
		1	16955	RS422 available signals part 9	read-only	STRING(235)			
		1	16956	RS422 available signals part 10	read-only	STRING(235)			

Index	Objektname	Instanz-ID	Subindex	Subobjektname	Zugriff	Datentyp	IFD2410	2411	2415
0x00B0	Outputs	1	16957	RS422 available signals part 11	read-only	STRING(235)			
		1	16958	RS422 available signals part 12	read-only	STRING(235)			
		1	16976	Outputinfo RS422 part 0	read-only	STRING(235)			
		1	16977	Outputinfo RS422 part 1	read-only	STRING(235)			
		1	16978	Outputinfo RS422 part 2	read-only	STRING(235)			
		1	16979	Outputinfo RS422 part 3	read-only	STRING(235)			
		1	16980	Outputinfo RS422 part 4	read-only	STRING(235)			
		1	16981	Outputinfo RS422 part 5	read-only	STRING(235)	v	N N	N N
		1	16982	Outputinfo RS422 part 6	read-only	STRING(235)	~	^	^
		1	16983	Outputinfo RS422 part 7	read-only	STRING(235)			
		1	16984	Outputinfo RS422 part 8	read-only	STRING(235)			
		1	16985	Outputinfo RS422 part 9	read-only	STRING(235)			
		1	16986	Outputinfo RS422 part 10	read-only	STRING(235)			
		1	16987	Outputinfo RS422 part 11	read-only	STRING(235)			
		1	16988	Outputinfo RS422 part 12	read-only	STRING(235)			
		1	20481	RS422 baud rate	read-write	UINT32			
0x00C1	Process data	0	256	Mapping size	read-only	UINT8			
		0	257	Oversampling	read-only	UINT8			
		0	512	Counter	read-only	UINT32			
		0	513	Time stamp	read-only	UINT32			
		0	514	Frequency	read-only	UINT32			
		0	3584	User calc output 01	read-only	UINT32			
		0	3585	User calc output 02	read-only	UINT32			
		0	3586	User calc output 03	read-only	UINT32			
		0	3587	User calc output 04	read-only	UINT32			
		0	3588	User calc output 05	read-only	UINT32			
		0	3589	User calc output 06	read-only	UINT32			
		0	3590	User calc output 07	read-only	UINT32			
		0	3591	User calc output 08	read-only	UINT32	x	x	x
		0	3592	User calc output 09	read-only	UINT32	~		
		0	3593	User calc output 10	read-only	UINT32			
		0	3594	User calc output 11	read-only	UINT32			
		0	3595	User calc output 12	read-only	UINT32			
		0	3596	User calc output 13	read-only	UINT32			
		0	3597	User calc output 14	read-only	UINT32			
		0	3598	User calc output 15	read-only	UINT32			
		0	3599	User calc output 16	read-only	UINT32			
		0	3600	User calc output 17	read-only	UINT32			
		0	3601	User calc output 18	read-only	UINT32			
		0	3602	User calc output 19	read-only	UINT32			
		1	0	Channel 1 distance 1	read-only	UINT32			
		1	1	Channel 1 distance 2	read-only	UINT32			
		1	2	Channel 1 distance 3	read-only	UINT32			
		1	3	Channel 1 distance 4	read-only	UINT32			
		1	4	Channel 1 distance 5	read-only	UINT32			x
		1	5	Channel 1 distance 6	read-only	UINT32			

Index	Objektname	Instanz-ID	Subindex	Subobjektname	Zugriff	Datentyp	IFD2410	2411	2415
0x00C1	Process data	1	16	Channel 1 intensity 1	read-only	UINT32	×	v	v
		1	17	Channel 1 intensity 2	read-only	UINT32	×	~	^
		1	18	Channel 1 intensity 3	read-only	UINT32			
		1	19	Channel 1 intensity 4	read-only	UINT32			v
		1	20	Channel 1 intensity 5	read-only	UINT32]		^
		1	21	Channel 1 intensity 6	read-only	UINT32			
		1	48	Channel 1 shutter	read-only	UINT32			
		1	49	Channel 1 encoder 1	read-only	UINT32			v
		1	50	Channel 1 encoder 2	read-only	UINT32	^	^	^
		1	51	Channel 1 encoder 3	read-only	UINT32			
		1	96	Channel 1 peak symmetry 1	read-only	UINT32	_		
		1	97	Channel 1 peak symmetry 2	read-only	UINT32			
		1	98	Channel 1 peak symmetry 3	read-only	UINT32]		~
		1	99	Channel 1 peak symmetry 4	read-only	UINT32]		^
		1	100	Channel 1 peak symmetry 5	read-only	UINT32]		
		1	101	Channel 1 peak symmetry 6	read-only	UINT32			
0x00F5	TCP/IP Interface	1	5	TCP/IP Interface Configuration	read-write	ip_address UINT32,			
						network_mask UINT32,			
						gateway UINT32,			
						primary_name_server UINT32,	x	x	x
						secondary_name_server UINT32,			
						default domain name CHAR			
1	1	1	1		1				

MICRO-EPSILON MESSTECHNIK GmbH & Co. KG Königbacher Str. 15 · 94496 Ortenburg / Deutschland Tel. +49 (0) 8542 / 168-0 · Fax +49 (0) 8542 / 168-90 info@micro-epsilon.de · https://www.micro-epsilon.de Your local contact: https://www.micro-epsilon.com/contact/worldwide/

X9750458.02-A012035MSC © MICRO-EPSILON MESSTECHNIK